El Futuro de las Baterías

El Futuro de las Baterías:

Grafeno como Solución Sostenible a la Crisis de Litio

En la última década, el aumento global en la demanda de baterías de iones de litio ha sido impulsado por la creciente popularidad de dispositivos electrónicos, desde dispositivos portátiles como tabletas, consolas y teléfonos celulares, hasta vehículos eléctricos. Según el Fondo Monetario Internacional, se prevé que para 2050 la demanda de baterías supere la oferta en un 40%, lo que plantea una potencial crisis para las industrias que dependen de ellas si no se implementan alternativas viables.

Las problemáticas de las baterías de iones de litio no se limitan solo al equilibrio oferta-demanda. El litio es un recurso finito cuya extracción y desecho tienen impactos negativos en el medio ambiente y la salud humana. Además, las baterías presentan riesgos de seguridad significativos, como inestabilidad, sobrecarga, sobrecalentamiento e incendios.

El grafeno, un nanomaterial bidimensional de carbono con estructura de lámina extremadamente delgada, transparente y resistente, ha captado la atención de los expertos en baterías. Su arquitectura única permite una alta conductividad eléctrica y estabilidad química, características esenciales para mejorar el rendimiento de baterías de iones de litio (LIB), litio-azufre (LSB) y litio-oxígeno (LOB).

Beneficios del grafeno en las baterías:

  1. Mayor capacidad de almacenamiento energético: El grafeno tiene una estructura con una extensa área superficial, lo que facilita una mayor cantidad de sitios de intercalación para los iones de litio. Esto se traduce en una mejora significativa en la capacidad de almacenamiento energético de las baterías.
  2. Mejora en la conductividad eléctrica: Los enlaces π-π del grafeno permiten un transporte eficiente de electrones entre los materiales activos de los electrodos y los colectores de corriente. Esto reduce la resistencia interna de las baterías y mejora su potencia de salida, lo que es crucial para aplicaciones que requieren altas tasas de carga y descarga.
  3. Estabilidad mejorada y mayor durabilidad: El grafeno promueve la estabilidad de los materiales de los electrodos al prevenir la degradación prematura durante los ciclos de carga y descarga. Esto no solo prolonga la vida útil de las baterías, sino que también asegura una mayor estabilidad cíclica, manteniendo un rendimiento constante a lo largo del tiempo.

Perspectivas futuras y alternativas:

A pesar del crecimiento continuo del mercado de baterías de iones de litio, sus riesgos ambientales y limitaciones técnicas están impulsando la investigación hacia alternativas más sostenibles y eficientes. Algunas de estas alternativas incluyen sistemas de baterías basados en sodio/azufre, quitina/zinc, silicio/carbono, y combinaciones de grafeno con otros materiales avanzados.

En Energeia-Graphenemex, nos enorgullece estar a la vanguardia de estas innovaciones, explorando cómo el grafeno y otros materiales nanotecnológicos pueden seguir transformando la industria de las baterías y contribuyendo a un futuro energético más limpio y sostenible.

Redacción: EF/ DHS

Referencias

  1. A. Ali, P.K. Shen, Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: fundamentals to applications, Carbon Energy 2 (2020) 99.
  2. A. Ali, P.K. Shen, Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting, Electrochem. Energy Rev. 3 (2020) 370;
  3. A. Ali, P.K. Shen, Recent advances in graphene-based platinum and Palladium electrocatalysts for the methanol oxidation reaction, J. Mater. Chem. 7 (2019) 22189–22217; 4. Moreno-Brieva, Fernando, & Merino-Moreno, Carlos. (2020). Scientific and Technological Links from Samsung On Lithium Batteries and Graphene. Journal of technology management & innovation, 15(4), 81
  4. Yu Yang, Renjie Wang, Zhaojie Shen, Quanqing Yu, Rui Xiong, Weixiang Shen, Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal  strategy for thermal runaway, Advances in Applied Energy, 11, 2023, 100146
  5. https://www.hibridosyelectricos.com/coches/grafeno-baterias-coches-electricos_69751_102.html
  6. https://rpp.pe/columnistas/fernandoortegasanmartin/grafeno-vs-litio-el-futuro-de-las-baterias-automotrices-noticia-1391824
  7. https://www.energymonitor.ai/tech/energy-storage/graphene-is-set-to-disrupt-the-ev-battery-market/
  8. https://www.eleconomista.com.mx/opinion/Datos-sobre-el-mercado-de-smartphones-en-Mexico-20240131-0117.html

Óxido de Grafeno y su versatilidad en el desarrollo de aplicaciones

Óxido de Grafeno y su versatilidad en el desarrollo de aplicaciones:

De Tecnologías de Detección a Soluciones Ambientales

El grafeno y sus derivados como el óxido de grafeno (GO) y óxido de grafeno reducido (rGO) son nanomateriales de carbono bidimensionales y en forma de lámina con una amplia gama de oportunidades para numerosas aplicaciones debido a su delgadez, transparencia, conductividad, flexibilidad, estabilidad química, impermeabilidad y resistencia mecánica. En el caso del GO y rGO, además de su gran superficie de área con zonas hidrófilas e hidrófobas propias del grafeno, permiten la adsorción de moléculas aromáticas orgánicas, iones y polímeros mediante apilamiento π-π, puentes de hidrógeno e interacciones electrostáticas; propiedades que los convirtieron en materiales adecuados para la construcción de sensores o de plataformas biocatalíticas y fotocatalíticas. De acuerdo con diversos reportes, la relación superficie-volumen de los materiales de grafeno mejora la carga superficial de las moléculas deseadas, mientras que su excelente conductividad eléctrica, sobre todo a temperatura ambiente, favorece el paso de los electrones hacia la superficie de los electrodos para análisis o fotocatálisis.

Por otro lado, las láminas de grafeno no son propiamente planas, es decir, presentan ondulaciones que se forman como resultado de la unión entre sus átomos de carbono o de fluctuaciones térmicas que, finalmente, pueden inducir campos magnéticos y cambiar sus propiedades electrónicas para el diseño de sensores, biosensores o dispositivos electrónicos en general. Es así como en el transcurso de más de diez años de investigación y de la exploración de su maravillosa multifuncionalidad, el estudio del grafeno ha trascendido para el desarrollo de dispositivos altamente sensibles para monitorear, por ejemplo, la presencia de gases nocivos, moléculas o proteínas de relevancia médica e incluso para la descontaminación del agua.

Sistemas de detección

Los metamateriales son un tipo de compuestos con la capacidad de producir respuestas electromagnéticas útiles para el diseño de sensores o dispositivos de detección no destructiva. Por lo general, este tipo de sensores están conformados por un material aislante y un material conductor, sensibles al índice de refracción de la capa superior del analito. En presencia del grafeno se ha observado que dicha interacción (sensor- analito) se ve mejorada por cambios en la intensidad de la resonancia y, por lo tanto, se pueden lograr cambios de amplitud que favorecen aún más la sensibilidad de detección.

En un estudio realizado en 2023 por la Escuela de Ingeniería Electrónica y de la Información de la Universidad de Ciencia y Tecnología de Zhejiang, Hangzhou, China, se diseñó un sensor compuesto por una película de poliimida (PI) como capa aislante, una estructura de aluminio como capa conductora y una monocapa de grafeno como interfaz de detección. Los resultados de la simulación indicaron que el grafeno puede modular todo el campo eléctrico y producir un cambio de amplitud que incrementa los límites detección de manera importante.

En otro estudio realizado en el Laboratorio de materiales nanoestructurados del Instituto de Física de la UASLP., se utilizó óxido de grafeno funcionalizado con nanopartículas de oro como plataforma de biodetección por SERS (Surface Enhanced Raman spectroscopy), una importante técnica para la detección biológica gracias a su alta sensibilidad, bajos requerimientos de muestra, relativamente bajo costo y detección en tiempo real. Para la investigación se utilizó cristal violeta como molécula estándar y flavin adenin dinucleótido como coenzima experimental por su participación en numerosos procesos redox de reacciones metabólicas y transporte biológico de electrones. Los resultados arrojaron que los híbridos de óxido de grafeno con nanopartículas de oro mejoran sustancialmente las señales SERS en comparación con las nanopartículas individuales. Además, los resultados son consistentes con otras investigaciones sobre la identificación de una importante mejora para la estabilización de moléculas y reducción de la fluorescencia durante las mediciones, la cual suele ser una gran desventaja de este tipo de técnicas, respaldando su potencial como herramienta diagnóstica o de seguimiento.

Eliminación de gases tóxicos

Los avances en la nanoingeniería permiten que las láminas de grafeno y GO puedan manipularse para la detección y separación de ciertos gases. De acuerdo con los resultados de un estudio realizado por el Departamento de Ingeniería Energética de la Universidad de Hanyang, Seúl, Corea, la difusión selectiva se puede lograr controlando los canales y poros del flujo de gas mediante diferentes métodos de apilamiento, logrando demostrar que los grupos funcionales del GO proveen un comportamiento de adsorción único hacia el CO2. .

Conversión de CO2

Las propiedades fotocatalíticas del GO también pueden ser aprovechadas para la conversión de CO2 en hidrocarburos como el metanol para la captación de la energía solar y la reducción de CO2. En 2018, dentro del laboratorio de Tecnología Avanzada para Síntesis y Procesamiento de Materiales, de la Universidad Tecnológica de Wuhan, China, se utilizaron nanopartículas de cromato de plata (Ag2CrO4) como fotosensibilizador y GO como co- catalizador para la reducción fotocatalítica de CO2 en metanol y metano. El estudio concluyó que esta sinergia entre nanopartículas puede mejorar hasta 2,3 veces la actividad de conversión bajo irradiación solar gracias a una mejor absorción de luz, mayor adsorción de CO2 y mejor eficiencia en la separación de carga.

Descontaminación de agua

Las tecnologías del agua tienen diversas áreas de oportunidad, particularmente en el mejoramiento de los sistemas de filtración o de membranas. A este respecto se ha encontrado que el uso de nanoestructuras híbridas de grafeno, por ejemplo, con rutenio o magnetita puede permitir la eliminación de microorganismos y materia orgánica presentes en el agua. No obstante, se continúa el avance de las investigaciones para el perfeccionamiento de las metodologías basadas en grafeno para la eliminación y reducción de iones metálicos como el zinc, cobre, plomo, cadmio, cobalto, entre otros. 

En Energeia- Graphenemex® reconocemos y admiramos los avances que los centros de investigación han logrado en distintas áreas del conocimiento, partiendo de la ciencia básica hasta resultados en ciencia aplicada. Tenemos la firme convicción de que en el corto o mediano plazo este tipo de tecnologías las veremos materializadas en productos reales, útiles para la sociedad y el medio ambiente.

Redacción: EF/ DHS   

Referencias

  1. A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene, Nat. Mater. 6 (2007) 858;
  2. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat. Nanotechnol. 4 (2009) 562;
  3. G. Yildiz, M. Bolton-Warberg and F. Awaja. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomaterialia 131 (2021) 62;
  4. Lang, T.; Xiao, M.; Cen,W. Graphene-Based Metamaterial Sensor for Pesticide Trace Detection. Biosensors 2023, 13, 560;
  5. D. Hernández- Sánchez, E. G. Villabona Leal, I. Saucedo-Orozco, V. Bracamonte, E. Pérez, C. Bittencourt and M. Quintana, Phys. Chem. Chem. Phys., 2017;
  6. Kim, H.W.; Yoon, H.W.; Yoon, S.-M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 2013, 342, 91;
  7. Kim, D.; Kim, D.W.; Lim, H.-K.; Jeon, J.; Kim, H.; Jung, H.-T.; Lee, H. Intercalation of gas molecules in graphene oxide interlayer: The role of water. J. Phys. Chem. C 2014, 118, 11142;
  8. Xu, D.; Cheng, B.; Wang, W.; Jiang, C.; Yu, J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2018, 231, 368;
  9. Jiˇríˇcková, A.; Jankovský, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920;
  10. M. Quintana, E. Vazquez & M. Prato, “Organic Functionalization of Graphene in Dispersions”, Acc. Chem. Res., vol. 46, n.o 1, pp. 138-148, 2013. DOI: 10.1021/ar300138e; 11. Roberto Urcuyo1,2,3, Diego González-Flores1,3, Karla Cordero-Solano, Rev. Colomb. Quim., vol. 50, no. 1, pp. 51-85, 2021;
  11. B. Xue, M. Qin, J. Wu et al., “Electroresponsive Supramolecular Graphene Oxide Hydrogels for Active Bacteria Adsorption and Removal”, ACS Appl. Mater. Interfaces, 8, 24, 15120;
  12. C. Wang, C. Feng, Y. Gao, X. Ma, Q. Wu & Z. Wang, “Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution”, Chem. Eng. J.,173, 1, 92.

El Grafeno como Motor de la Revolución Energética

El Grafeno como Motor de la Revolución Energética:

Avances en Eficiencia y Almacenamiento de Energía Renovable

En el ámbito actual, la preocupación por el medio ambiente y el cambio climático ha dejado de ser una moda para convertirse en una prioridad. Esto ha dado lugar a la creación de equipos multidisciplinarios a nivel global, enfocados en encontrar soluciones tecnológicas más sostenibles para los desafíos energéticos, como la generación y almacenamiento de energía, con el objetivo adicional de reducir al máximo las emisiones.

En este contexto, la gestión de la energía térmica mediante tecnologías pasivas, como la solar, ha adquirido una importancia significativa. Su aprovechamiento como una alternativa ecológica y energéticamente eficiente ha experimentado un crecimiento considerable, desde su aplicación en entornos domésticos hasta sistemas de generación eléctrica.

Sin embargo, la intermitencia natural de la energía solar debido a los ciclos diurnos y nocturnos plantea desafíos a largo plazo. Por esta razón, es necesario considerar tecnologías complementarias, como los materiales de cambio de fase (PCM por sus siglas en inglés). Estos materiales tienen la capacidad de absorber energía térmica del entorno para cambiar su estado, liberando esta energía almacenada para aplicaciones de calefacción o refrigeración en diversos sectores, incluyendo la construcción, dispositivos electrónicos y aplicaciones aeroespaciales, entre otros.

Dentro de los PCM más conocidos se encuentra la parafina, cuya capacidad de cambio de fase sólido-líquido le permite almacenar calor latente al absorber energía térmica hasta alcanzar su punto de fusión. Aunque las parafinas presentan ventajas como ser materiales seguros, confiables y económicos, así como tener una estabilidad aceptable para ciclos largos de cristalización-fusión, también enfrentan desafíos, como su baja conductividad térmica y su fuga en estado líquido.

Afortunadamente, los PCM, incluyendo la parafina, se benefician de los avances en nanotecnología, especialmente al ser modificados con nanopartículas como el Grafeno. La incorporación de Grafeno en PCM como la parafina mejora significativamente la conductividad térmica y la eficiencia energética, facilitando el almacenamiento y conversión de energía solar a térmica.

¿Qué hace tan especial al Grafeno?

El Grafeno gracias a sus excepcionales características fisicoquímicas es uno de los nanomateriales más prometedores como coadyuvante en la resolución de las problemáticas energéticas. A diferencia de otras nanoestructuras de carbono como el diamante, grafito, carbón activado, fullerenos o nanotubos, el Grafeno tiene mejores propiedades eléctricas y mecánicas, con la ventaja adicional de que se combina fácilmente con otros compuestos como los PCM para compartir sus características y mejorar su desempeño. Por ejemplo, comparado con los nanotubos, una de las nanoestructuras de carbono más conocidas y estudiadas, el Grafeno tiene una mayor movilidad de cargas (200.000 cm2 V 1 s 1 Vs. 150.000 cm2 V 1 s 1), mayor conductividad eléctrica (6,6 MS m -1 Vs. 0,35 MS m -1), y mayor transmitancia (97,0% Vs. 95,7%) que lo hacen sumamente atractivo para su uso en materia energética.

¿Cómo se relacionan el Grafeno con los PCM para el aprovechamiento de la energía solar?

Históricamente desde el punto de vista sostenible y como aplicación real, la arquitectura es uno de los claros ejemplos en el aprovechamiento de la energía solar. Partiendo en la antigüedad con la fabricación de paredes de adobe para atrapar el calor del día y liberarlo durante la noche, hasta la infraestructura moderna con el uso de calentadores o paneles solares hasta la implementación de muros Trombe como herramienta de calefacción pasiva. Por ejemplo, estos últimos constan de un sistema de materiales como el vidrio, madera, acero, aluminio, concreto y PCM como la parafina, dispuestos en configuraciones especiales que en conjunto permiten absorber el calor para conducirlo lentamente hacia la vivienda. A partir la identificación de las propiedades multifuncionales del Grafeno y de la exploración de sus beneficios en distintos sectores, pudo identificarse que su incorporación en la parafina utilizada para la fabricación de sistemas de calefacción pasiva puede mejorar la conductividad térmica o la fuerza impulsora hasta en un 164%, mostrando una evidente superioridad sobre las nanopartículas híbridas de alta eficiencia como el Cu-TiO2 o Al2O3-MWCNT, cuyos beneficios normales oscilan entre el 50 y 70%. Esto quiere decir que, en caso de lograr integrar estas tecnologías a los sistemas de calefacción pasiva además de mejorar el confort térmico durante todo el año también representaría ahorros energéticos importantes, además de reducir las emisiones de CO2.

Celdas solares

Otra conocida aplicación potencial de la nanotecnología en el sector energético, es el diseño de la cuarta generación de paneles solares, que incluye el uso de nanomateriales bidimensionales como el disulfuro de molibdeno (MoS2), Diseleniuro de wolframio (WSe2) y nuevamente, el Grafeno.

Entre las ventajas más representativas que el Grafeno ha demostrado sobre otros materiales está, además de su resistencia mecánica, su alta movilidad de cargas, gran transmitancia, ligereza, flexibilidad y estabilidad, que han logrado que en menos de 10 años su desempeño para el diseño de paneles solares haya tenido importantes avances al incrementar su eficiencia del 1.5% al 15%, casi comparable con la eficiencia de las celdas actuales que oscila entre el 20 y 22%. No obstante, y en vías de mejorar aún más estos porcentajes, los expertos en la materia continúan explorando metodologías a partir del dopaje del Grafeno con otras estructuras como el silicio, hexafluoruro de molibdeno, óxido de molibdeno, cloruro de tionilo, ácido trioxionítrico, cloruro de oro, boro, oxígeno, nitrógeno, fósforo o azufre, para reducir su resistencia y aprovechar mejor la energía de la luz solar.  

En Energeia – Graphenemex, la empresa líder en Latinoamérica en el diseño y desarrollo de aplicaciones con materiales grafénicos somos sensibles de los retos que, como cualquier tecnología emergente, el Grafeno enfrenta, y nos es grato formar parte del selecto grupo de investigadores e industriales que a nivel mundial busca beneficiar a la sociedad, a la economía y al medio ambiente con las bondades que estos maravillosos materiales pueden ofrecer.

Gracias a nuestro equipo multidisciplinario en muy poco tiempo hemos logrado vencer los obstáculos que han limitado la llegada de este material al mercado en aplicaciones reales,  comenzando con su producción a gran escala, con calidad controlada y a un costo asequible, así como con el desarrollo de nuevos productos con nanoingeniería grafénica sobre los cuales ha sido fundamental controlar su estabilidad y compatibilidad con los compuestos y procesos utilizados en cada aplicación o industria.

Probablemente el Grafeno como aliado de las energías renovables aún está en etapas incipientes y no propiamente por su manipulación, sino por la complejidad que este sector representa, sin embargo, no se deben desestimar los importantes avances logrados a lo largo de la última década, puesto que son las bases para las siguientes generaciones de equipos y/o tecnologías.

Redacción: EF/DHS

Referencias

  1. Jafaryar M, Sheikholeslami M. Simulation of melting paraffin with graphene nanoparticles within a solar thermal energy storage system. Sci Rep. 2023, 26;13(1):8604;
  2. R. Bharathiraja, T. Ramkumar, M. Selvakumar. Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications. J. Energy Storage, 73, Part C, 2023, 109216;
  3. Li-Wu Fan, Xin Fang, Xiao Wang, Yi Zeng, Yu-Qi Xiao, Zi-Tao Yu, Xu Xu, Ya-Cai Hu, Ke-Fa Cen, Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials, Applied Energy, 110, 2013, 163;
  4. Top Khac Le., et al., Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions. RSC Adv., 2023, 13, 31273

Optimización de Compuestos de Fibra de Vidrio y de Carbono

Optimización de Compuestos de Fibra de Vidrio y de Carbono:

Mejorando Propiedades con Nanopartículas de Grafeno

Las fibras de vidrio y de carbono gracias a sus excelentes propiedades son ampliamente utilizados en industrias como la aeroespacial, marítima, automotriz, deportiva, construcción e incluso para la fabricación de componentes fundamentales de energías renovables como la eólica. Sin embargo, pese a su excelente desempeño, son compuestos que suelen presentar un fenómeno conocido como “delaminación interlaminar” derivada de una débil interacción interfacial fibra/resina que puede comprometer la vida útil y seguridad del producto debido a su importante participación en la transferencia de tensión entre ambos elementos. Al ser esta interacción clave para el éxito a largo plazo de las estructuras compuestas, se han explorado diversas alternativas de mejora como la fijación en Z, cosido y trenzado; aumento del área superficial y la reactividad de las fibras por medio de modificaciones superficiales como el tratamiento con plasma, modificación térmica o funcionalización química que, evidentemente son procesos complejos, costosos y no siempre eficientes que, además, tienden a reducir el rendimiento del laminado en el plano.

“Como estrategia adicional y de relativamente reciente aparición, se propuso la incorporación de nanopartículas al material compuesto por fibras buscando favorecer la interacción con la matriz en la que se embeben”.

El Grafeno, el nanomaterial conocido como la piedra angular de la familia del carbono y que desde su aislamiento ha resaltado calificativos como “el material del futuro” o “el material milagro”, es un atractivo candidato como nano refuerzo de incontables compuestos poliméricos gracias a su estructura plana grafitizada única, que da lugar a mejores propiedades mecánicas, térmicas, entre otras que, a diferencia de otras nanopartículas como los nanotubos de carbono (CNT, por sus siglas en inglés), no suele aumentar de manera relevante la viscosidad de las resinas y por lo tanto, permite incorporar concentraciones más altas favoreciendo la tan mencionada interacción fibra/matriz.

Las investigaciones sobre los efectos del grafeno para el diseño de materiales híbridos a base de fibras (vidrio/carbono) embebidas en una matriz polimérica comúnmente de naturaleza epóxica, han destacado mayor rigidez de los compuestos, mejoras en resistencia a la fractura, mejor lubricación e incluso mejor conductividad eléctrica. Esto se debe a que su gran superficie de área permite una transmisión de carga efectiva desde la matriz blanda del polímero a las láminas de grafeno que son relativamente más rígidas, lo cual es un requisito esencial para mejorar el rendimiento mecánico, ratificado por una mayor resistencia al corte interlaminar del material, mayor resistencia a la tracción y al impacto. Además, durante la manipulación y corte de las estructuras híbridas de fibra, la presencia del grafeno contribuye a generar menos calor durante el fresado, conduce a temperaturas de corte más bajas y menor rugosidad en la superficie; asimismo, otro de los beneficios es que el grafeno produce mayor efecto endurecedor y mejor resistencia a la flexión del material expuesto a distintas temperaturas con registros desde los 40 °C hasta los 200 °C.

En Energeia- Grapenemex la empresa líder en América latina en la producción de materiales grafénicos y en el desarrollo de aplicaciones, estamos convencidos de que las extraordinarias capacidades del grafeno como nanorefuerzo de incontables matrices tridimensionales continuarán alentando a investigadores y colegas industriales a explorar sus beneficios para la fabricación de componentes estructurales más resistentes y ligeros de aeronaves como fuselaje y alas; autopartes y carrocerías aerodinámicas de automóviles; aerogeneradores, equipos deportivos, materiales de construcción, entre otros. 

La imagen inferior evidencia la buena interacción fibra/matriz promovida por la presencia del grafeno 5.

Redacción: EF/DH

Referencias:

  1. Effect of dispersion of alumina nanoparticles and graphene nanoplatelets on microstructural and mechanical characteristics of hybrid carbon/glass fibers reinforced polymer composite. Journal of material research and technology. 2021, 14, 2624;
  2. Experimental investigation on the properties of glass fiber-reinforced polymer composites containing Graphene. AIP Conf. Proc. 2022, 2405, 050009;
  3. Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content. Composites part A: Applied science and manufacturing. 2017, 95, 40;
  4. Preparation and Mechanical Properties of Graphene/Carbon Fiber-Reinforced Hierarchical Polymer Composites. J. compos sci. 2019, 3, 30;
  5. Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 139, 012004;
  6. Effect of Graphene on Machinability of Glass Fiber Reinforced Polymer (GFRP). J. Manuf. Mater. Process. 2019, 3, 78;
  7. Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J Mater Sci. 2016, 51, 3337.

El grafeno en la protección contra la radiación electromagnética

El grafeno en la protección

contra la radiación electromagnética

El desarrollo de la tecnología en comunicación junto con los dispositivos electrónicos ha generado una gran preocupación en relación con la radiación electromagnética emitida por estas tecnologías.

La radiación electromagnética es un tipo de campo electromagnético, es decir, una combinación de campos eléctricos y magnéticos oscilantes, que se propaga a través del espacio transportando energía de un lugar a otro. La radiación electromagnética puede manifestarse de diversas maneras, como ondas de radio, microondas, radiación infrarroja, luz visible, radiación ultravioleta, rayos X o rayos gamma y corresponden a diferentes longitudes de onda, que van del orden de kilómetros (ondas de radio) hasta el orden de picómetros (rayos gamma). El rango completo de longitudes de onda es lo que se denomina espectro electromagnético (Figura 1.).

Figura 1. Espectro Electromagnético.

Las radiaciones electromagnéticas pueden ser de alta frecuencia (radiaciones de telefonía móvil e inalámbrica, radiofrecuencias, ondas de TV, microondas, radares, señales de satélite, Wifi, Bluetooth) y de baja frecuencia (campos generados por cables o consumidores eléctricos).

El calor y la radiación electromagnética (radiación EM) son subproductos inevitables en los dispositivos electrónicos, especialmente los que funciona a altas frecuencias. A medida que los dispositivos electrónicos disminuyen de tamaño, estos funcionan a frecuencias cada vez más altas, generando incluso más calor y ondas electromagnéticas.

Las radiaciones electromagnéticas de alta frecuencias no solo degradan los dispositivos en sí mismos (produciendo calor), sino que también tienden a interferir con los aparatos electrónicos vecinos y lo más importante, es que tiene un efecto adverso sobre la salud humana ya que puede provocar muchas enfermedades, como leucemia, abortos espontáneos y cáncer cerebral.

Por lo que, el bloqueo o protección (blindaje) contra la radiación electromagnética podría ser una de las soluciones para minimizar riesgos a la salud y para la protección de equipos y/o aparatos electrónicos. Los metales son materiales de bloqueo electromagnético naturales, capaces de reflejar las ondas electromagnéticas debido a sus electrones libres, lo que explica su alta conductividad eléctrica y su escasa profundidad de penetración. Sin embargo, su elevado peso, el costo y la susceptibilidad de los metales a la corrosión, hacen que su uso sea limitado si no que imposible.

El uso de recubrimientos o pinturas conductoras para el bloqueo de radiación electromagnética es la opción más viable para dar solución a la problemática. Actualmente el grafeno es el aditivo nanotecnológico más revolucionario en la industria de recubrimientos. Debido a que el grafeno posee extraordinarias propiedades, las cuales incluyen alta conductividad eléctrica, elevada conductividad térmica y resistencia mecánica. Además, posee otras propiedades distintivas, incluida, la impermeabilidad a los gases, resistencia química, potencial antibacteriano y gran área superficial.

La capacidad de conducción eléctrica y la conductividad térmica del grafeno, puede ser aprovechada en la formulación de recubrimientos de blindaje contra la radiación EM, ya que el grafeno forma una red continua a lo largo de la superficie del recubrimiento, creando películas homogéneas que bloquean la radiación electromagnética mientras disipa el exceso de calor.

En estudios recientes, se ha reportado que la incorporación de nanoestructuras a base de carbono, como es el grafeno en recubrimientos o pinturas, permite el desarrollo de recubrimientos con alta conductividad eléctrica para el blindaje o protección contra las interferencias de electromagnéticas (EMI). La forma de actuar respecto a las ondas electromagnéticas de alta frecuencia es por refracción. Las ondas electromagnéticas rebotarán (reflexión) sobre la superficie tratada similar al efecto de un espejo respecto a la luz (Ver Fig. 2). El efecto-barrera en la propagación podría atribuirse a la contribución proveniente de la capacidad de reflexión, la absorción y múltiples reflexiones internas. La eficiencia de blindaje incrementa con la adición de mayor concentración de grafeno en la matriz polimérica del recubrimiento. Estos recubrimientos con grafeno pueden llegar a bloquear más del 99.98 % de la radiación electromagnética de alta frecuencia.

Figura 2. Porcentaje de Reflexión, absorción y transmisión de epóxico pristine (a) y epóxico con grafeno (b).
Tomado de Adv. Electron. Mater. 2019, 5. 1800558

Estos recubrimientos contra la radiación electromagnético pueden actuar tanto para la alta frecuencia como para baja frecuencia, con una excelente calidad de atenuación (disminución de intensidad de señales u ondas eléctricas) de hasta 38 dB, con una mano, y de 47 dB si se aplican dos manos.

Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea Graphenergy, está en constante investigación y desarrollo de nuevos recubrimientos multifuncionales y actualmente tiene a la venta una amplia gama de recubrimientos nanotecnológicos con grafeno.

Actualmente se están desarrollando y evaluando recubrimientos de blindaje contra la radiación electromagnética. Recubrimientos con alta conductividad eléctrica, para reducir los campos eléctricos de alta y baja frecuencia respectivamente. Estos recubrimientos, ofrecerán también protección anticorrosiva y antimicrobiana. Además, de brindar alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y una extraordinaria adherencia.

Referencias

  1. Suneel Kumar Srivastava, Kunal Manna, Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: a review, Journal of Materials Chemistry A, 10.1039/D1TA09522F, 10, 14, (7431-7496), (2022).
  2. Kargar, F., Barani, Z., Balinskiy, M., Magana, A. S., Lewis, J. S., Balandin, A. A., Adv. Electron. Mater. 2019, 5, 1800558.
  3. Seul Ki Hong et al 2012 Nanotechnology 23 455704.
  4. Lekshmi Omana, Anoop Chandran*, Reenu Elizabeth John, Runcy Wilson. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. Omega 2022, 7, 30, 25921–25947