Grafeno y nanomedicina:
la combinación perfecta para una salud mejorada
Parte lll. Odontología- Implantología
La aplicación de la nanotecnología en la nanomedicina se fundamenta en que la mayoría de las moléculas biológicas desde el ADN, aminoácidos y proteínas hasta constituyentes como la hidroxiapatita y las fibrillas de colágeno, entre otros, existen y funcionan en la escala nanométrica.
Nanómetro (nm): millonésima parte de 1 milímetro.
Los materiales grafénicos son nanopartículas de carbono en forma de láminas de dos dimensiones (2D) que han ganado popularidad en el campo de las ciencias biomédicas no sólo por sus increíbles propiedades mecánicas, térmicas, eléctricas, ópticas y biológicas, sino también por su capacidad de transferir estas propiedades a otros materiales permitiendo la posibilidad de crear nuevos compuestos con características avanzadas. En Odontología y en particular en lo relacionado con la implantología, esta transferencia de propiedades ha permitido abrir numerosas líneas de investigación con grandes expectativas debido al interesante efecto sinérgico entre el control de infecciones y su capacidad regenerativa.1
Nanopartícula: partícula que mide entre 1 y 100 nm.
¿Cuáles son los problemas que el grafeno podría resolver?
Osteointegración
Una de las principales preocupaciones después de la colocación de un implante es el fracaso en su osteointegración. Esto puede ocurrir porque en la interfase hueso- implante en lugar de crecer células óseas, crece un tejido fibroso que no permite la estabilización del implante. Una alternativa para favorecer las condiciones del sitio donde ocurrirán las interacciones celulares es la modificación de la superficie del implante por medio de métodos físicos o químicos para crear nanoporosidades que aumenten la superficie de área y favorezcan la actividad celular. 2
Oseointegración: conexión firme, estable y duradera entre un implante y el hueso que lo rodea. Su éxito depende de factores biológicos y sistémicos del paciente, además de las características del implante.
En el caso de los materiales grafénicos, además de su extensa y extremadamente fina superficie de área de un átomo de espesor, otro de sus valores agregados es la nube de electrones que los rodea y la presencia de algunos grupos oxigenados les permite interactuar con las proteínas séricas para formar una adhesión focal. Es decir, el carácter hidrofóbico/hidrofílico de estos nanomateriales en combinación con la rugosidad de la superficie coadyuva en la interacción con las proteínas y posteriormente con las células, actuando como andamio para promover el crecimiento, diferenciación y anclaje de las células óseas en el implante, favoreciendo el camino para una osteointegración estable y predecible con una mejor proyección de la vida útil.3,4
El Impacto regenerativo de los materiales grafénicos reside en su gran habilidad para adsorber proteínas creando una capa entre las células y las superficies de los materiales para promover la adhesión y proliferación celular.1
Control de infecciones
Otra causa para el fallo de un implante es la aparición de infecciones peri- protésicas o peri- implantares; para evitarlas es común utilizar técnicas como impregnación con antibióticos, sistemas locales de administración de fármacos y el recubrimiento de implantes con nanotubos de titanio, nanopartículas de plata o con nano- películas polipeptídicas para la liberación controlada de antibióticos.5 No obstante, el preocupante aumento de la resistencia a antibióticos ha desencadenado que estas estrategias sean cada vez menos efectivas.
Los materiales grafénicos además de su biocompatibilidad, cuentan con propiedades antimicrobianas intrínsecas con ventajas sobre los antibióticos tradicionales al tener menos posibilidades de desarrollo de resistencia microbiana. Estos efectos desde hace varios años son explorados por la odontología sobre materiales biocerámicos como la alúmina y el zirconio, metales como el titanio, materiales de restauración como el ionómero de vidrio y materiales poliméricos como el polimetilmetacrilato (PMMA), por mencionar algunos. En general, los mecanismos antimicrobianos aceptados para estas nanoestructuras son: 1) daño físico a la membrana, 2) estrés oxidativo, 3) inactivación por extracción de electrones, 4) aislamiento contra el paso de nutrientes y finalmente, 5) en el caso de los recubrimientos, el control de la hidrofobicidad y la energía de superficie también puede impedir la unión de células con baja afinidad y prevenir la formación de biopelículas.6,7
Biopelícula: Capa de microorganismos que crecen y se adhieren a la superficie de una estructura natural como los dientes (placa dentobacteriana) o artificial como un dispositivo médico (catéteres intravasculares).
En 2021 un grupo de científicos de la universidad de Gwangju, Corea, publicó un estudio en el cual recubrieron implantes de zirconio con óxido de grafeno por el método de plasma de argón. Sus resultados reportaron que esta modificación redujo en un 58.5% la presencia del Streptococcus mutans, la bacteria de mayor influencia en la formación de la placa dentobacteriana y de la caries dental, concordando con una importante reducción en el espesor de la biopelícula del 43.4%. Además del efecto antimicrobiano también evidenciaron un aumento estadísticamente significativo del 3.2% y 15.7% en la proliferación y diferenciación de las células óseas.8 Estos resultados son consistentes con lo reportado por la Universidad Jiao Tong, Shanghái, sobre un material híbrido de titanio con grafeno sintetizado por la técnica de sinterización por plasma de chispa (SPS). De igual manera, la investigación demostró una interesante disminución de la formación de biopelículas multibacterianas compuestas por Streptococcus mutans, Fusobacterium nucleatum y Porphyromonas gingivalis, acompañada poruna mejora en la actividad de los fibroblastos gingivales humanos, uno de los grupos celulares más importantes que participan en la cicatrización.9 Además de la sinergia entre el control de infecciones y su capacidad regenerativa, otros estudios relacionados con la implantología dental, también están enfocando su atención en las propiedades mecánicas para el diseño de nuevos implantes o materiales de restauración. 10- 12
Energeia- Graphenemex, la empresa mexicana pionera en América Latina en la investigación y desarrollo de aplicaciones con materiales grafénicos, a lo largo de 10 años de carrera ha superado numerosos retos científicos y comerciales para llegar al mercado con productos para distintas industrias. Y siendo consiente que para llegar al sector salud es fundamental realizar exhaustivas evaluaciones, hace una atenta invitación a todas aquellas empresas y/o centros de investigación que estén interesados en seguir explorando los beneficios de los materiales grafénicos y sentar bases cada vez más sólidas sobre su uso seguro para aplicaciones biomédicas.
Redacción: EF/DHS
Referencias
- ¿Can Graphene Oxide Help to Prevent Peri-Implantitis in the Case of Metallic Implants? Coatings 2022, 12, 1202.
- New design of a cementless glenoid component in unconstrained shoulder arthroplasty: a prospective medium term analysis of 143 cases. Eur J Orthop Surg Traumatol 2013. 23(1):27–34 7. European Journal of Orthopaedic Surgery & Traumatology (2018) 28:1257
- Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv. Healthc. Mater. 2021, 2001414.
- Nanotechnology and bone regeneration: a mini review. 2014 Int Orthop 38(9):1877–1884 /1. European Journal of Orthopaedic Surgery & Traumatology (2018) 28:1257
- Graphene: ¿An Antibacterial Agent or a Promoter of Bacterial Proliferation? iSciencie. 2020. 23, 101787
- Graphene: The game changer in dentistry. IP Annals of Prosthodontics and Restorative Dentistry 2022;8(1):10
- Antibacterial Activity of Graphene Depends on Its Surface Oxygen Content.
- Direct-Deposited Graphene Oxide on Dental Implants for Antimicrobial Activities and OsteogenesisInt. J. Nanomedicine 2021 :16 5745
- Graphene-Reinforced Titanium Enhances Soft Tissue Seal. Front. Bioeng. Biotechnol. 2021. 9:665305.
- Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical Fatigue. J. Clin. Med. 2023, 12, 1269.
- Mechanical Characterization of Dental Prostheses Manufactured with PMMA–Graphene Composites. Materials 2022, 15, 5391
- Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics. J. Am. Ceram. Soc. 2018, 101, 8