El Óxido de Grafeno, el nanomaterial que va a reducir el impacto de la corrosión

El Óxido de Grafeno

el nanomaterial que va a reducir el impacto de la corrosión

¿Qué es la corrosión?

El término corrosión se refiere a la destrucción de un material como resultado de sus interacciones químicas o electroquímicas con el medio circundante; la importancia de su prevención y/o control se debe a que al ser un fenómeno natural, una vez iniciado es prácticamente imposible de detener, es entonces que, una evolución descontrolada invariablemente comprometerá la integridad y vida útil de los materiales generando a la industria involucrada gastos directos e indirectos por pérdida de producto, paro de actividades por mantenimiento hasta el reemplazo de maquinaria o estructuras.

“Las pérdidas económicas causadas por corrosión superan el 3,4% del PIB mundial”

Corrosión influenciada microbiológicamente

La corrosión influenciada microbiológicamente o MIC (por sus siglas en inglés, Microbiologically Influenced Corrosion) puede definirse como el proceso electroquímico en el cual los microorganismos como algas, hongos y bacterias inician, facilitan o aceleran una reacción de corrosión, generalmente localizada en forma de grietas o picaduras sobre superficies tanto metálicas como de concreto. Aunque la corrosión involucra diversas variables, se estima que la MIC participa desde el 20 hasta el 40% de todas las fallas por corrosión, particularmente en la infraestructura hidráulica y petrolera, con costos cercanos a los 2 mil millones de dólares anuales.

¿Por qué inicia la MIC?

La presencia de humedad en cualquier entorno es el hábitat ideal para el crecimiento de numerosas comunidades de microorganismos que, aunada a condiciones óptimas de temperatura, pH, flujo de nutrientes, etc., promueve su adhesión y crecimiento sobre las superficies formando una biopelícula que si no es removida, crece hasta convertirse en una biomasa endurecida y obstructiva dentro de la cual las bacterias reductoras de sulfato, bacterias productoras de ácido, bacterias reductoras de hierro y bacterias formadoras de gel promueven la corrosión o MIC a través de reacciones electroquímicas destructivas de las superficies.

¿Cómo se combate?

Son tres los métodos más comunes para tratar de combatir la MIC, el primero es la limpieza mecánica de las superficies para remover las biopelículas idealmente en etapas incipientes, sin embargo, no siempre es posible acceder a todas las zonas expuestas dificultando su eficiencia; la segunda es el uso de agentes biocidas que, además de ser costosos, la mayoría pueden no ser amigables con la salud humana y con el medio ambiente; finalmente y, quizá el método más apto es la colocación barreras externas a manera de recubrimientos o películas poliméricas para evitar el contacto directo de las estructuras metálicas o de concreto con el medio agresivo.

Control de la corrosión en el concreto

Las opciones disponibles para proteger al concreto contra la corrosión desde su estado fresco son las adiciones de materiales puzolánicos, ceniza volante, escoria de alto horno, agregados sin sulfatos, fibras poliméricas, uso de cemento resistente a sulfatos o modificados con nanopartículas como los nanotubos y nanofibras de carbono, nanopartículas de sílice, alúmina o dióxido de titanio; para la protección en el estado endurecido es común la aplicación de barreras físicas como los recubrimientos anticorrosivos o películas poliméricas  y, para la protección de las estructuras metálicas, además de los recubrimientos anticorrosivos, se puede hacer uso de estructuras galvanizadas, estañadas o la colocación de ánodos de sacrificio de magnesio. Sin embargo, se considera que, por la porosidad natural del concreto, no existen métodos totalmente eficientes que ataquen el problema de la corrosión hacia el interior de las estructuras.

La corrosión en el concreto puede ocurrir por carbonatación, ingreso de cloruros y sulfatos o por ataque microbiológico; cuando el concreto tiene acero de refuerzo y es atacado por la corrosión, se puede llegar a formar un óxido con 2 a 4 veces mayor volumen que el acero original provocando pérdida de adherencia con el concreto y poniendo en riesgo la resistencia del material. Además, la porosidad del concreto además de permitir el paso de humedad para el ingreso de iones agresivos también ofrece millones de nichos ideales para la retención de microorganismos y para la subsecuente formación de las biopelículas iniciadoras de la MIC, no solo porque favorecen su anclaje, sino porque dificultan su eliminación y promueven el avance de la corrosión.

“Se espera que para 2032 el mercado de los inhibidores de corrosión ascienda a 12,5 billones, siendo que en 2022 esta cifra oscilaba en los 8,3 billones”.

El Grafeno y el óxido de grafeno son nanomateriales multifuncionales de carbono con extraordinarias propiedades que, al incorporarse como nanorelleno de otros compuestos como recubrimientos, plásticos o cemento, tienen la capacidad de organizar molecularmente su estructura de tal forma que mejoran su resistencia frente a ataques químicos, físicos y microbiológicos. Entre sus particularidades está que son nanoestructuras inertes, es decir, son estables, no reaccionan con otros materiales y no sufren oxidación ni corrosión; son sumamente delgados y ligeros, pero a la vez, muy resistentes y flexibles; son impermeables incluso a los gases y cuentan con mecanismos antimicrobianos sumamente eficientes.

A continuación, se resumen algunas de las investigaciones más destacadas sobre el uso del grafeno como alternativa contra la corrosión influenciada microbiológicamente (MIC):

2015- El Departamento de Ciencias e Ingeniería de Materiales del Instituto Politécnico Rensselaer, Nueva York, E.U.A., modificó recubrimientos de poliuretano con grafeno identificando una protección 10 veces mayor contra la MIC en comparación con los recubrimientos de poliuretano no modificados.  

2017– El laboratorio de Nanobiomateriales de la Universidad Técnica Federico Santa María, Valparaíso, Chile, evaluó el efecto directo del grafeno colocado sobre sustratos de níquel y su interacción con bacterias causantes de corrosión; los resultados evidenciaron una barrera impermeable generada por el grafeno que bloqueó la interacción entre las bacterias y el metal, pero sin efecto bactericida.

2021– El Departamento de Ingeniería Civil y Ambiental, de la Escuela de Minas y Tecnología de Dakota del Sur, E.U.A., reportó que múltiples capas de grafeno restringieron 10 veces más el ataque de la MIC sobre superficies de cobre y níquel.

2021– La Escuela de Ingeniería de la Universidad de Glasgow, Escocia, examinó el deterioro de pastas de cemento modificadas con óxido de grafeno (GO) expuestas a ambientes de ácidos. Los resultados demostraron que la presencia de GO disminuye la pérdida de masa en el concreto por dichos ataques, reconociéndolo como un aditivo potencial para modificar la microestructura y la vida útil del concreto frente a ambientes agresivos como los presentes en almacenes de productos químicos hasta los sistemas de aguas residuales.

Energeia Fusion (Graphenemex®), la empresa mexicana líder en América Latina en la producción de materiales grafénicos, después de un largo camino de investigación en 2018 lanzó al mercado la Línea Graphenergy que comprende una serie de recubrimientos anticorrosivos y antimicrobianos con nanotecnología grafénica y el primer aditivo para concreto con óxido de grafeno en el mundo, cuyo uso individual o combinado prometen grandes beneficios contra la corrosión.  

Graphenergy Construcción es un aditivo base agua con óxido de grafeno diseñado para mejorar la calidad de las estructuras de cemento en términos de resistencia mecánica y durabilidad. El valor agregado que el óxido de grafeno  ofrece al concreto en la lucha contra la MIC desde el exterior hacia su interior es resultado de una serie de eventos que comienzan favoreciendo la hidratación del cemento actuando como reservorios de agua y como plataforma para el crecimiento de cristales de C-S-H y para disipar el calor de hidratación; mejora las zonas de transición interfacial entre la pasta de cemento y los agregados ayudando a reducir el tamaño y volumen de los poros, esto a su vez favorece el  aumento de la resistencia mecánica, reduce la permeabilidad, aumenta su resistividad, es decir, reduce la transferencia de cargas eléctricas hacia el interior del concreto retrasando el inicio de corrosión y, finalmente,  modifica las cargas electrostáticas y la humectabilidad de las superficies dificultando la formación de biopelículas causantes de la MIC.

Los recubrimientos Graphenergy formulados con óxido de grafeno ofrecen gran resistencia contra la corrosión en zonas costeras y no costeras, así como una excelente protección antimicrobiana sin mecanismos biocidas, ya que su efecto consiste en evitar la adhesión de los microorganismos a las superficies. Además, su impermeabilidad, resistencia a la abrasión y resistencia contra los intensos efectos de la intemperie incrementan su vida útil y, por lo tanto, disminuyen sustancialmente los costos de mantenimiento tanto de estructuras metálicas como de concreto.

Redacción:  EF/DH

Referencias

  1. The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions. Materials 2017, 10, 1406;
  2. Effect of graphene oxide on the deterioration of cement pastes exposed to citric and sulfuric acids. Cement and Concrete Composites, 2021, 124, 104252;
  3. Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. Scientific Reports, 2015, 5:13858;
  4. Atomic Layers of Graphene for Microbial Corrosion PreventionACS Nano 2021, 15, 1, 447;
  5.  Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Construction and Building Materials. 2020, 239, 117813;
  6. Microbiologically Induced Corrosion of Concrete and Protective Coatings in Gravity Sewers. Chinese Journal of Chemical Engineering, 2012, 20(3) 433;
  7. In situ Linkage of Fungal and Bacterial Proliferation to Microbiologically Influenced Corrosion in B20 Biodiesel Storage Tanks. Front. Microbiol. 2020, 11;
  8. Chapter 1 – Failure of the metallic structures due to microbiologically induced corrosion and the techniques for protection. Handbook of Materials Failure Analysis. With Case Studies from the Construction Industries. 2018, 1;
  9. Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon, 2020, 159, 586;
  10. Gerhardus Koch, Cost of corrosion, In Woodhead Publishing Series in Energy, Trends in Oil and Gas Corrosion Research and Technologies, Woodhead Publishing, 2017;
  11. https://www.futuremarketinsights.com/reports/corrosion-inhibitors-market.
  12. http://www.imcyc.com/revistacyt/oct11/artingenieria.html