La revolución del grafeno en la construcción

La revolución del grafeno en la construcción:

hacia estructuras más resistentes y duraderas 

“La prueba de resistencia a la compresión suele ser el parámetro más utilizado como indicador de calidad del concreto; sin embargo, su valor no determina por sí solo su durabilidad, es decir, además de la resistencia mecánica, la permeabilidad y la resistencia química también influyen en su vida útil”

La permeabilidad del concreto se entiende como el paso de agua y de iones agresivos a través de los capilares existentes entre los áridos y la pasta de cemento; este es un fenómeno complejo y depende sobre todo de la estructura atómica de los iones que penetran. Una de las sustancias más dañinas para el concreto son los iones cloruro, estos pueden estar presentes desde el inicio en la mezcla fresca, es decir, disueltos en los agregados, aditivos o en el agua, o bien, permear desde el exterior, siendo este caso el que expone mayor riesgo de corrosión. Aunque en general se puede decir que, la durabilidad del concreto ante los agentes atmosféricos depende fundamentalmente de la permeabilidad al agua, mientras que la durabilidad respecto a las sales agresivas, tanto para el concreto como para las armaduras depende de su resistencia al ingreso de cloruros por distintas vías.

“La penetrabilidad de los cloruros se manifiesta principalmente por la difusión de los iones en el concreto, mejor que por la penetración de toda la disolución en las muestras. Es decir, la penetración de los cloruros no depende únicamente de la permeabilidad del agua”

Para proteger al concreto contra la corrosión existen dos tipos principales de productos, por un lado, están los aditivos para las mezclas en concreto fresco cuya función es actuar sobre la superficie metálica anulando la reacción anódica, catódica o ambas y por otro, están los recubrimientos para la protección del concreto endurecido. No obstante, cualquiera que sea el producto utilizado, la protección anticorrosiva suele ser temporal, sobre todo cuando las estructuras se encuentran sujetas a movimientos, cargas o temperaturas que pudiesen afectar el desempeño de la protección o barrera colocada.

En el artículo anterior titulado Hacia una construcción sostenible se habló sobre la importancia del componente nanométrico clave en la resistencia del cemento, conocido como silicatos cálcicos hidratados (C-S-H) o gel de tobermorita y de su interesante interacción con las nanopartículas de óxido de grafeno (GO), una estructura nanométrica derivada del grafito y de reciente interés para el desarrollo de estructuras más resistentes, durables y amigables con el medio ambiente.

El GO está formado por láminas nanométricas de átomos de carbono enlazados en un patrón hexagonal y por una serie de grupos oxigenados anclados a su superficie que le facilita su dispersión en agua y combinarse otros materiales, por ejemplo, con las nanopartículas presentes en el cemento (C-S-H).

A este respecto, estudios internacionales demuestran que la forma y química superficial del GO, le permite actuar como una plataforma para acelerar la hidratación del cemento y promover la creación de grandes cantidades de partículas C-S-H, a partir de la formación de un nuevo enlace GO/ C-S-H.  Esta fuerte interacción da lugar a una red más densa de cristales de cemento entrelazados que, además de favorecer las propiedades mecánicas de las estructuras, también actúa como una barrera contra la infiltración de agua a través de los poros capilares, pero con un efecto que proyecta tener mayor duración que los aditivos actualmente disponibles. Esta propiedad es extremadamente importante para la durabilidad del concreto y, en particular, para la prevención de la reacción álcali-sílice (ASR), una reacción de expansión que ocurre en presencia de humedad entre la pasta de cemento alcalina y la sílice amorfa reactiva causando agrietamientos.

Resistividad eléctrica y la velocidad de corrosión

Otra importante prueba para el concreto es la resistividad eléctrica y se define como la resistencia de un material al paso de cargas eléctricas; su medición en concreto es una prueba común para identificar la presencia de humedad, así como para predecir el periodo de iniciación de corrosión en el concreto armado basándose en la relación inversa entre la resistividad eléctrica y la difusividad de los iones. Esto es, a mayor resistividad menor movimiento de cargas eléctricas causada por una menor porosidad. La participación de las nanopartículas de óxido grafeno en esta propiedad también ha sido evaluada en distintos estudios que confirman que la interacción GO/C-S-H produce un concreto más compacto o menos poroso que, además de reducir la permeabilidad del agua y de iones, también limita el movimiento de cargas eléctricas brindando mayor protección anticorrosiva de las estructuras metálicas del concreto.

Energeia Fusion (Graphenemex®), la empresa mexicana líder en América Latina en la investigación y producción de materiales grafénicos, desde hace más de 10 años se dio la tarea de materializar con fundamento científico los beneficios del grafeno para convertirlo en aplicaciones reales. Fue así como después de un largo camino de investigación y con resultados equiparables a los reportados por diversos estudios internacionales respecto al uso del óxido de grafeno en distintos productos, entre ellos el concreto, en 2018 logró lanzar al mercado Graphenergy construcción®, el primer aditivo para concreto con óxido de grafeno en el mundo; un aditivo multifuncional base agua que contribuye a mejorar distintas propiedades de las estructuras base cemento con una sola aplicación, como:

  1. Remodelación de la microestructura de la pasta de cemento con mejor enlace interfacial GO/C-S-H,
  2. Mejor compacidad del cemento,
  3. Menor movimiento de cargas eléctricas;
  4. Disminución en el proceso de extensión de grietas,
  5. Reducciones significativas en el índice de dirección del hidróxido de calcio,
  6. Mayor resistencia mecánica al mejorar su microestructura,
  7. Mayor durabilidad de las estructuras por mejoras en impermeabilidad, resistencia a la penetración de cloruros y reducción de la profundidad de penetración.

Es importante recordar que, los efectos mencionados pueden variar ya que además del tipo de grafeno u óxido de grafeno utilizado, las propiedades finales de las estructuras base cemento también dependen de factores como la relación agua- cemento, grado de compactación de la mezcla; las características del cemento, agregados, aditivos, entre otros, pero que con un adecuado manejo y seguimiento de los aditivos grafénicos los resultados pueden llegar a ser muy interesantes.

Redacción: EF/DHS

Fuentes

  1. Ultrahigh Performance Nanoengineered Graphene- Concrete Composites for Multifunctional Applications. Adv. Funct. Mater. 2018; 28: 1705183;
  2. The role of graphene/graphene oxide in cement hydration. Nanotechnology Reviews. 2021;10(1): 768;
  3. Experimental study of the effects of graphene nanoplatelets on microstructure and compressive properties of concrete under chloride ion corrosión. Construction and Building Materials, 2022; 360, 129564;
  4. Effect Of On Graphene Oxide the Concrete Resistance to Chloride Ion Permeability. IOP Conf. Ser. 2018: Mater. Sci. Eng. 394 032020;
  5. Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Constr Build Mater. 2017; 136, 506;
  6. Recent progress on graphene oxide for next-generation concrete: Characterizations, applications and challenges. “J. Build. Eng. 2023; 69, 106192;
  7. Graphene nanoplatelet reinforced concrete for self-sensing structures – A lifecycle assessment perspective. J. Clean. Prod. 2019; 240, 118202;
  8. Graphene opens pathways to a carbon-neutral cement industry. Science Bulletin. 2021; 67;
  9. Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 2014; A4014010-1;
  10. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnology Reviews 2020; 9: 303–322, 10;
  11. Permeabilidad a los cloruros del hormigón armado situado en ambiente marino sumergido. Revista Ingeniería de Construcción. 2007; 22: 1, 15;
  12. Penetrabilidad del hormigón al agua y a los iones agresivos como factor determinante de su durabilidad. Materiales de Construcción, 1973; 23: 150;
  13. La resistividad eléctrica como parámetro de control del hormigón y de su durabilidad. Revista ALCONPAT, 2011; 1(2),90;
  14. Portland cement blended with nanoparticles. Dyna, 2007; 74:152, 277;
  15. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cem concr res, 2016; 83: 114