Protección contra bacterias, virus y hongos con recubrimientos grafénicos

Recubrimientos Protección contra bacterias, virus y hongos con

recubrimientos grafénicos

En menos de 20 años el mundo ha enfrentado a una serie de fenómenos anormales causados por patógenos altamente infecciosos. La fácil y rápida transmisibilidad de las infecciones obliga a buscar estrategias cada vez más eficientes para reforzar los servicios sanitarios, además de representar un cambio radical en nuestro estilo de vida, donde las extremas técnicas de higiene se ubican en el primer lugar de importancia para evitar la propagación y contagio masivo dentro y fuera de los hospitales.

Enfermedades virales de mayor impacto.

  • 2002-2003. Síndrome respiratorio agudo grave (SARS-Cov).
  • 2012. Síndrome respiratorio de medio oriente (MERS- Cov).
  • 2014- 2016. Ébola.
  • 2019- 2022. SARS-Cov-2.

>6.5 millones de muertes.

Bacterias peligrosas para la salud humana:

  • Staphylococcus aureus.
  • Streptococcus pneumoniae.
  • Pseudomonas aeruginosa.
  • Haemophilus influenzae.
  • Helicobacter pylori.

Hongos frecuentes en ambiente doméstico:

  • Aspergillus spp.
  • Cladosporium spp.
  • Alternaria spp.
  • Acremonium spp.
  • Epiccocum spp.
  • Penicillium spp.
  • Stachybotrys spp.


El Grafeno como coadyuvante en el control de infecciones

En 2018 Energeia- Graphenemex® lanzó al mercado la línea Graphenergy antimicrobiano integrada por dos recubrimientos especializados de base vinílica y vinil acrílica con Óxido de grafeno cuyo potencial antimicrobiano es 400 veces superior a los productos comunes, ayudando a mantener las superficies libres de hongos y bacterias por tiempo prolongado.

Estudios in vitro y en ambiente relevante realizados por el Laboratorio de Patología, Bioquímica y Microbiología de la Facultad de Estomatología de la U.A.S.L.P., demostraron que las superficies protegidas con Graphenergy antimicrobiano se mantienen libres de microorganismos por más de 6 meses, sin necesidad de químicos adicionales. Figura 1.

Fig. 1. Resultados a 2, 4 y 6 meses sobre la protección de Graphenergy antimicrobiano comparados con un grupo control (Sin Óxido de Grafeno).
Importante: Una superficie limpia se encuentra en un rango de 1-10 UFC/cm2.

En 2022, la alianza estratégica entre las empresas Energeia-Graphenemex® y Oxical® se prepara para lanzar al mercado un nuevo recubrimiento 100% natural, sin compuestos tóxicos (COVs), altamente impermeable, transpirable y altamente antimicrobiano elaborado a partir de Cal de alta pureza modificada con nanopartículas de Grafeno, bajo la marca Graphenecal ecológico.

Su extraordinaria capacidad antimicrobiana no solo es un gran coadyuvante para mantener los espacios libres de microorganismos, sino que también protege contra el biodeterioro de las superficies, particularmente de aquellas con alto valor histórico. Figura 2.

Fig. 2. La pintura a la cal sin grafeno presenta una biopelícula microbiana en más del 90% de su superficie. El área recubierta con Graphenecal ecológico se mantuvo libre de contaminación por más de 100 días de incubación. El efecto antimicrobiano de Graphenecal ecológico es altamente eficaz, con una reducción de microorganismos de 7 Log10.

¿La nanotecnología grafénica es segura?

Sí, los recubrimientos antimicrobianos Graphenergy y Graphenecal son tan seguros como cualquier pintura o recubrimiento convencional. Las nanopartículas de Grafeno y Óxido de grafeno contenidas en sus formulaciones no se desprenden ni liberan sustancias tóxicas al medio ambiente.

“No todos los microorganismos son peligrosos, pero es mejor mantenerlos alejados”

¿Cómo actúan los materiales grafénicos?


  1. Barrera física- Alta impermeabilidad. Los materiales grafénicos suelen presentarse en millones de bloques compuestos por 1 hasta 10 láminas nanométricas similar a un paquete de naipes, existiendo entre cada lámina múltiples caminos sinuosos que actúan como una barrera externa que suprime la entrada de nutrientes esenciales para el crecimiento microbiano.

  2. El Grafeno y sus derivados pueden actuar como donadores o aceptores de electrones alterando la cadena respiratoria del microorganismo o bien, extrayendo sus electrones. Este desequilibrio a manera de nano- circuito es tan rápido que no le da tiempo al microorganismo de recuperarse y, por lo tanto, lo inactiva antes de adherirse a la superficie.

  3. Daño estructural. Los bordes de las láminas del nanomaterial actúan como pequeñas navajas que dañan o rompen la membrana celular del microorganismo, alterando su funcionamiento y evitando su viabilidad.

¿Los materiales grafénicos tienen actividad antiviral?

El efecto antiviral de los materiales grafénicos parece no ser muy distinto al descrito contra hongos y bacterias. Las hipótesis están dirigidas hacia un interesante efecto sinérgico entre impermeabilidad, daño estructural e interacciones electrostáticas por la polaridad positiva de algunos virus (SARS- Cov- 2) y la polaridad negativa del Óxido de grafeno, además de su gran capacidad de anclaje a proteínas.

Energeia- Graphenemex® es la empresa mexicana pionera en América Latina enfocada en la investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial.  Además de agregar valor a sus productos con las propiedades multifuncionales del Grafeno y sus derivados, la compañía también tiene como objetivo crear alianzas estratégicas para apoyar desarrollos de innovación con nanotecnología grafénica.

Referencias

  1. García-Contreras R, Guzmán Juárez H, López-Ramos D & Alvarez Gayosso C. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1-9. Doi:10.17126/joralres. 2021.019
  2. UM.D. Giulio, R. Zappacosta, S.D. Lodovico, E.D. Campli, G. Siani, A. Fontana, L. Cellini, Antimicrobial and antibiofilm eficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 62(7), e00547-18 (2018). https://doi.org/10.1128/AAC.00547-18
  3. H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 7(13), 1701406 (2018). https://doi.org/10.1002/ adhm.201701406
  4. Sydlik SA, Jhunjhunwala S, Webber MJ, Anderson DG, Langer R. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano. 2015. 9: 3866
  5. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010. 10: 3318.
  6. Bhattacharya K, Farcal LR, Fadeel B. Shifting identities of metal oxide nanoparticles: focus on inflammation. 2014. MRS Bull; 39: 970
  7. Huang PJ, Pautler R, Shanmugaraj J, Labbé G, Liu J. Inhibiting the VIM-2 metallo-β-lactamase by graphene oxide and carbon nanotubes. ACS Appl Mater Interfaces 2015; 7: 9898.
  8. Moghimi SM, Wibroe PP, Wu L, Farhangrazi ZS. Insidious pathogen-mimicking properties of nanoparticles in triggering the lectin pathway of the complement system. Eur J Nanomedicine. 2015; 7: 263.
  9. Bhattacharya K, Mukherjee SP., Gallud A., Burkert SC., Bistarelli S., Bellucci S., Bottini, M., Star A., Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine. 2016. 12. 333