Innovation in corrosion protection: graphene oxide technology

Innovation in corrosion protection:

graphene oxide technology

Corrosion is the greatest challenge that many industries in the world must face. Currently, there is a wide variety of coatings on the market for protection against corrosion. However, most of these coatings do not have the physicochemical characteristics necessary for good performance. These coatings does not have perfect barriers and eventually fail, their chemical resistance depends on their impermeability to chemical substances, and with it their resistance to abrasion and their adhesion capacity.

Currently Energeia – Graphenemex®, a leading Mexican company in Latin America in the research and production of graphene materials for the development of industrial applications, has a wide range of coatings through its Graphenergy line.

Graphenergy is the line of nanotechnological coatings with graphene oxide, which has a complete portfolio of high-performance anticorrosive coatings for Industrial and Infrastructure maintenance.

Taking into account that the infrastructure or industrial equipment may be exposed to environments with different degrees of corrosion (intermediate or extreme), the use of Coating Systems for corrosion protection is recommended, Graphenergy offers the following alternatives:

1. ALKYD SYSTEM

Recommended for intermediate or mild corrosion environments (intermediate corrosive or aggressive conditions). This system is weather resistant and provides anticorrosive protection.

This system is made up of a primer and alkyd-type enamel, ideal for the protection of metal surfaces and industrial infrastructure, both for interiors and exteriors. Provides high anticorrosive protection, resistance to UV rays and provides extraordinary adherence to the substrate. It is recommended for non-coastal areas or where humidity conditions are not high.

2. EPOXY-POLYURETHANE SYSTEM

Designed for severe or critical environments, in which the infrastructure or equipment and/or some other protected element is exposed to UV rays and an industrial atmosphere with high contamination (highly corrosive vapors).

This system is made up of an epoxy primer and Polyurethane (finish). Coatings designed for the protection of metal surfaces exposed to highly corrosive and chemical environments. Both coatings offer high adhesion, extraordinary chemical resistance, high abrasion resistance, resistance to UV rays, and impermeability, to improve the life of any metal surface or installation and reduce maintenance costs.

Graphenergy anticorrosive coating systems have many benefits, which include:

  • Higher performance than existing coating technologies on the market today.
  • Fewer applied coating layers are required and with higher anti-corrosion protection.
  • Coatings with greater adherence to the substrate.
  • Coatings with greater chemical resistance and high thermal resistance.
  • Coatings with greater impermeability and non-stick effect.

When a coating system is selected, the influence of the environment to which it will be exposed and the final appearance that is sought and some other considerations that the system must perform, and its maintenance must be taken into account.

On the other hand, another decisive factor that determines the selection of the first anticorrosive to be used and consequently the coating system is the physical state of the metal surface to be coated and/or the surface treatment or preparation that can be given.


Referencias

  1. Fengjuan Xiao, Chen Qian, et al., et al., Progress in Organic Coatings, 125, 79-88 (2018); doi.org/10.1016/j.porgcoat.2018.08.027
  2. Karolina Ollik and Marek Lieder. Review of the application of graphene-based coatings as anticorrosion layers. Coatings 2020, 10(9), 883. 2020.
  3. Zhang J., Kong, G., Li S., Le Y., Che C., Zhang S., Lai D., Liao X. Graphene-reinforced epoxy powder coating to achieve high performance wear and corrosion resistance. 20:1448-4160, 2020.

Graphene oxide: the new ally of primary coatings in corrosion protection

Graphene oxide:

the new ally of primary coatings in corrosion protection

Corrosion is an electrochemical reaction that occurs when the metal reacts with the surrounding environment forming ferric oxide, causing the metal to lose its main characteristics of hardness and resistance. Oxygen, temperature, humidity, contaminants, gases, and the physicochemical characteristics of water are the main factors that affect the rate at which metals corrode.

One of the most widely used methods to control corrosion is the application of protective (primer) coatings to metal surfaces. The coating forms a barrier between the substrate (metal) and the surrounding medium, retarding the deterioration or oxidation of the metal. The coatings are polymer-based substances (paints), resistant to degradation, which are used to cover the material to be protected.

Nowadays, a wide variety of primers have been developed based on different types of resin, such as the alkyd and epoxy type. Efficiency is generally associated with an increase in cost. Unfortunately, most of these coatings or paints are not perfect barriers and eventually fail due to holes or micropores in the coating or the diffusion of oxygen and water through it (they are not completely waterproof). On the other hand, the coatings continue to have low thermal resistance and above all a limited chemical resistance.

Currently Energeia – Graphenemex®, a leading Mexican company in Latin America in the research and production of graphene materials for the development of industrial applications, through its Graphenergy line, has launched a range of primers and other nanotechnological coatings.

Graphenergy anticorrosive primers are coatings based on graphene oxide (GO), a new nanotechnological additive that provides multiple properties to coatings, including extraordinary corrosion protection and barrier technology (barrier effect). Graphene oxide creates pathways that are very tortuous, which prevents oxygen and water molecules from diffusing through the coating and eventually reaching the metal surface, providing protection against corrosion (Fig. 1). These primaries can act as mentioned, by (1) forming a barrier, which greatly prevents the penetration of oxygen and water molecules, or (2) the inhibition of the corrosion process, by increasing the electrical and ionic resistivity, cutting the corrosion cycle.

Fig. 1 Mechanism of anticorrosive protection of coatings based on polymers and graphene.

Among the anticorrosive primers that are currently for sale by Graphenergy, there are two: “Graphenergy anticorrosive alkyd primer” and “Graphenergy anticorrosive epoxy primer”, each one designed according to different needs and conditions.

A. Graphenergy anticorrosive alkyd primer.

Provides high anticorrosive protection, resistance to UV rays and provides extraordinary adherence to the substrate. Ideal for the protection of industrial infrastructure, for the application of ferrous surfaces, both for interiors and exteriors. It is recommended for non-coastal areas or where humidity conditions are not high.

B. Graphenergy anticorrosive epoxy primer.

In addition, this coating offers extraordinary chemical resistance, with high wear resistance, resistance to UV rays, impermeability and greater adhesion, in order to improve the useful life of any metal surface or installation and reduce maintenance costs.

Graphene coatings provide enhanced properties and many more benefits, including:

  • Higher performance than existing coating technologies on the market today.
  • Fewer applied coating layers are required and with higher anti-corrosion protection.
  • Zinc reduction in formulations can reduce the amount by up to 50%.
  • Primers with greater chemical resistance and high thermal resistance.
  • Coatings with greater impermeability and non-stick effect (dirt does not adhere to it). Graphene oxide creates a two-dimensional network on the surface of the coating, which does not allow the anchoring or diffusion of water molecules or chemical substances, which allows the development of coatings with a hydrophobic effect, resulting in coatings that are easier to clean (See Fig.2).
Fig. 2. Behavior of coatings without and with graphene oxide, after subjecting them to a chemical attack (corrosive solution) for more than two hours.
  • Improves adhesion to the substrate. The primers with graphene oxide increase their adherence by up to 50% with respect to the control (Fig. 3).
Fig. 3. Primer adhesion test with and without graphene oxide.
  • More flexible coatings. The incorporation of graphene oxide not only improves adhesion, but also allows flexibility to the coating, allowing it to have high resistance to bending or greater resistance to fracture (Fig. 4).
Fig.4. Flexibility test in primary without and with graphene oxide.

Referencias

  1. Chang, C.-H. et al. Novel Anticorrosion Coatings Prepared from Polyaniline/Graphene Composites. Carbon N. Y. 50, 5044–5051 (2012).
  2. Fengjuan Xiao, Chen Qian, et al., et al., Progress in Organic Coatings, 125, 79-88 (2018); doi.org/10.1016/j.porgcoat.2018.08.027
  3. Karolina Ollik and Marek Lieder. Review of the application of graphene-based coatings as anticorrosion layers. Coatings 2020, 10(9), 883. 2020.
  4. Zhang J., Kong, G., Li S., Le Y., Che C., Zhang S., Lai D., Liao X. Graphene-reinforced epoxy powder coating to achieve high performance wear and corrosion resistance. 20:1448-4160, 2020.
  5. Ghosh Tuhin and Karak Niranjan. Mechanically robust hydrophobic interpenetrating polymer network-based nanocomposites of hyperbranched polyurethane and polystyrene as an effective anticorrosive coating. New J. Chem., 2020, 44, 5980-5994.

Nanotechnology and corrosion protection: the era of graphene oxide

Nanotechnology and corrosion protection:

the era of graphene oxide

Corrosion is defined as the gradual deterioration of metallic materials and their properties, and occurs when the metal reacts with the surrounding environment to form rust or another chemical compound. In general, atmospheric air, humidity, rain, and aqueous solutions (chemical products) are the environments that are most frequently associated with corrosion problems.

Nowadays, corrosion damage is one of the most important problems to face for many industries in the world. It is estimated that corrosion causes economic losses of 3.4% of world GDP (about 2.5 billion dollars per year). However, there are three industries whose corrosion impact is more frequent and riskier for their processes: the chemical industry, the shipbuilding industry and the construction industry.

In the chemical industry, the use of chemical products is paramount within its operations, so equipment and machinery are in direct and constant contact with chemical substances, increasing maintenance and/or repair costs, affecting the industry budget and their production. In the case of the naval industry, humidity and salt are the main factors that contribute to the corrosion process and, consequently, the deterioration and affectation of its facilities, ships, containers and even merchandise. On the other hand, in the construction industry, both the machinery and the construction areas themselves can be affected by corrosion due to their exposure to the environment. Corrosion causes the metallic assets to weaken, generating mechanical failures, putting the work at risk.

Anticorrosive coatings are regularly used for protection against corrosion, humidity and fouling of installations, machinery and equipment. At a commercial level, there is a wide variety of anticorrosive coatings based on different additives and resins, their efficiency is generally associated with an increase in cost. However, the coatings still have low thermal and corrosion resistance and especially limited chemical resistance.

Graphene is currently the most revolutionary nanotechnological additive in the coatings and paints industry. The incorporation of graphene as an additive in coatings produces coatings with extraordinary protection against corrosion. Graphene creates pathways that are very tortuous, preventing water and oxygen molecules and/or chemical agents from diffusing to the surface of metal-based materials, resulting in metal protection against oxidation and corrosion. corrosion (Fig. 1).

Figure 1. Schematic representation of the tortuous path for oxygen and water molecules in polymer coatings with clay and graphene.

Graphene coatings provide many performance and anti-corrosion benefits, including:

  • Higher performance than existing coating technologies on the market today.
  • Fewer applied coating layers are required for greater benefits
  • Zinc reduction in formulations
  • Chemical resistance


Graphene and graphene oxide-enhanced anticorrosive coatings will replace traditional zinc-based coatings, which have several drawbacks, such as short life, high content of volatile organic compounds (VOCs), slow curing, high cost, sedimentation in storage.


Currently Energeia – Graphenemex®, a leading Mexican company in Latin America in research and production of graphene materials for the development of industrial applications, through its Graphenergy line, has launched a wide range of nanotechnological coatings with graphene. These coatings offer high anticorrosive protection, extraordinary chemical resistance, high wear resistance, resistance to UV rays, impermeability and greater adherence, in order to improve the useful life of any surface or installation and reduce maintenance costs.

References

  1. Chang, C.-H. et al. Novel Anticorrosion Coatings Prepared from Polyaniline/Graphene Composites. Carbon N. Y. 50, 5044–5051 (2012).
  2. Fengjuan Xiao, Chen Qian, et al., et al., Progress in Organic Coatings, 125, 79-88 (2018); doi.org/10.1016/j.porgcoat.2018.08.027
  3. Chaudhry, A. U., Mittal, V. & Mishra, B. Inhibition and Promotion of Electrochemical Reactions by Graphene in Organic Coatings. RSC Adv. 5, 80365–80368 (2015).
  4. Zhen, Z. & Zhu, H. Graphene: Fabrication, Characterizations, Properties and Applications. Graphene (Academic Press, 2018).

Protection against bacteria, viruses and fungi with graphene coatings

Protection against bacteria, viruses and fungi

with graphene coatings

In less than 20 years the world has faced a series of abnormal phenomena caused by highly infectious pathogens. The easy and rapid transmission of infections forces us to seek increasingly efficient strategies to strengthen health services, in addition to representing a radical change in our lifestyle, where extreme hygiene techniques are in first place of importance to avoid the spread and massive contagion inside and outside hospitals.

Viral diseases of greater impact.

  • 2002-2003. Severe acute respiratory syndrome (SARS-Cov).
  • 2012. Middle East Respiratory Syndrome (MERS-Cov).
  • 2014- 2016. Ebola.
  • 2019- 2022. SARS-Cov-2.

>6.5 million deaths.

Dangerous bacteria for human health:

  • Staphylococcus aureus.
  • Streptococcus pneumoniae.
  • Pseudomonas aeruginosa.
  • Haemophilus influenzae.
  • Helicobacter pylori.

Common fungi in the domestic environment:

  • Aspergillus spp.
  • Cladosporium spp.
  • Alternaria spp.
  • Acremonium spp.
  • Epiccocum spp.
  • Penicillium spp.
  • Stachybotrys spp.

Graphene as an adjuvant in infection control

In 2018, Energeia- Graphenemex® launched the antimicrobial Graphenergy line, made up of two specialized vinyl- and vinyl-acrylic-based coatings with graphene oxide, whose antimicrobial potential is 400 times higher than common products, helping to keep surfaces free of fungi and bacteria for a long time.

In vitro studies and in a relevant environment carried out by the Laboratory of Pathology, Biochemistry and Microbiology of the Faculty of Stomatology of the U.A.S.L.P., showed that surfaces protected with antimicrobial Graphenergy remain free of microorganisms for more than 6 months, without the need for additional chemicals. Figure 1.

Fig. 1. Results at 2, 4 and 6 months on the protection of antimicrobial Graphenergy compared to a control group (No Graphene Oxide).
Important: A clean surface is in the range of 1-10 CFU/cm2.

In 2022, the strategic alliance between the companies Energeia-Graphenemex® and Oxical® is preparing to launch a new 100% natural coating, without toxic compounds (VOCs), highly waterproof, breathable and highly antimicrobial, made from high-quality and purity lime modified with Graphene nanoparticles, under the ecological Graphenecal brand.

Its extraordinary antimicrobial capacity is not only a great aid in keeping spaces free of microorganisms, but also protects surfaces against biodeterioration, particularly those with high historical value. Figure 2.

Fig. 2. Graphene-free lime paint has a microbial biofilm on more than 90% of its surface. The area covered with organic Graphenecal remained free of contamination for more than 100 days of incubation. The antimicrobial effect of organic Graphenecal is highly effective, with a reduction of microorganisms of 7 Log10.

Is graphene nanotechnology safe?

Yes, Graphenergy and Graphenecal antimicrobial coatings are as safe as any conventional paint or coating. The graphene and graphene oxide nanoparticles contained in its formulations do not shed or release toxic substances into the environment.

“Not all microorganisms are dangerous, but it is better to keep them away”

How do graphene materials work?


  1. Physical barrier- High impermeability. Graphene materials are usually presented in millions of blocks composed of 1 to 10 nanometric sheets similar to a pack of cards, with multiple sinuous paths between each sheet that act as an external barrier that suppresses the entry of essential nutrients for microbial growth.

  2. Graphene and its derivatives can act as electron donors or acceptors, altering the respiratory chain of the microorganism or extracting its electrons. This imbalance in the form of a nano-circuit is so fast that it does not give the microorganism time to recover and, therefore, inactivates it before adhering to the surface.

  3. Structural damage. The edges of the nanomaterial sheets act like small knives that damage or break the cell membrane of the microorganism, altering its functioning and preventing its viability.

Do graphene materials have antiviral activity?

The antiviral effect of graphene materials seems not to be very different from that described against fungi and bacteria. The hypotheses are directed towards an interesting synergistic effect between impermeability, structural damage and electrostatic interactions due to the positive polarity of some viruses (SARS-Cov-2) and the negative polarity of graphene oxide, in addition to its great protein-anchoring capacity.

Energeia- Graphenemex®is the pioneer Mexican company in Latin America focused on the research and production of graphene materials for the development of applications at an industrial level. In addition to adding value to its products with the multifunctional properties of Graphene and its derivatives, the company also aims to create strategic alliances to support innovative developments with graphene nanotechnology.

References

  1. García-Contreras R, Guzmán Juárez H, López-Ramos D & Alvarez Gayosso C. Biological and physico-mechanical properties of poly (methyl methacrylate) enriched with graphene oxide as a potential biomaterial. J Oral Res 2021; 10(2):1-9. Doi:10.17126/joralres. 2021.019
  2. UM.D. Giulio, R. Zappacosta, S.D. Lodovico, E.D. Campli, G. Siani, A. Fontana, L. Cellini, Antimicrobial and antibiofilm eficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 62(7), e00547-18 (2018). https://doi.org/10.1128/AAC.00547-18
  3. H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 7(13), 1701406 (2018). https://doi.org/10.1002/ adhm.201701406
  4. Sydlik SA, Jhunjhunwala S, Webber MJ, Anderson DG, Langer R. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano. 2015. 9: 3866
  5. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010. 10: 3318.
  6. Bhattacharya K, Farcal LR, Fadeel B. Shifting identities of metal oxide nanoparticles: focus on inflammation. 2014. MRS Bull; 39: 970
  7. Huang PJ, Pautler R, Shanmugaraj J, Labbé G, Liu J. Inhibiting the VIM-2 metallo-β-lactamase by graphene oxide and carbon nanotubes. ACS Appl Mater Interfaces 2015; 7: 9898.
  8. Moghimi SM, Wibroe PP, Wu L, Farhangrazi ZS. Insidious pathogen-mimicking properties of nanoparticles in triggering the lectin pathway of the complement system. Eur J Nanomedicine. 2015; 7: 263.
  9. Bhattacharya K, Mukherjee SP., Gallud A., Burkert SC., Bistarelli S., Bellucci S., Bottini, M., Star A., Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine. 2016. 12. 333

Nanotechnology and tube labelling: an effective solution for material identification

Nanotechnology and tube labelling:

an effective solution for material identification

Mexico City – Energeia Graphenemex® is a pioneering nanotechnology company in Latin America, dedicated to the research and production of graphene materials, as well as the development of applications at an industrial level.

Within the company’s research and development protocols, it seeks to solve problems faced by companies or industries on a daily basis, for which research agreements or alliances are made to seek to develop a solution in which graphene is become the agent of change.


Why we developed Graphenergy Ink?

In 2019 there was an approach with one of the largest companies in the world in the manufacture of steel tubes that was facing a serious problem in its process of marking the tubes, which were marketed.

During the tube manufacturing process, marking is necessary for rapid identification and traceability, optimizing all the processes and procedures that each of the steel tubes must go through. However, there was a problem: the ink used in the marking process erased very easily and did not withstand application temperatures above 70°C, in addition to having low resistance to abrasion.

In the course of manufacturing steel tubes, it is normal for these tubes to be subjected to different processes; rotation on conveyors, rollers, shot blasting and transport with cranes, where there is high friction and abrasion between tubes, so the ink ended up being torn off, erasing the marking on the metal surface, and thus losing all control and traceability of the tubes.< /p>

To offer a comprehensive solution to the marking problem, Energeia Graphenemex®, through its Graphenergy Anticorrosive line, developed a new white marking ink with graphene oxide.

Among the most important characteristics of this developed graphene oxide marking ink are:

  • Extraordinary thermal resistance (resists more than 200 °C)
  • Resistance to UV rays
  • Anticorrosive property
  • High adhesion to metallic substrates
  • Abrasion resistance
  • Ultra-fast drying (3 seconds)
  • Excellent covering power

Thermal resistance to extreme temperatures

Thanks to the development of the marking ink, the problem of the lack of adherence of the marking ink was solved, as well as the issue of abrasion that occurs when moving the tubes during transport, thus maintaining the traceability of the tubes .

Due to its characteristics, the production process was additionally benefited by:

  • Ultra-fast drying: it allowed the production line not to stop, which could improve production times
  • Anti-corrosion protection: a version of the transparent ink was formulated that is applied on the tubes after marking, preventing them from rusting.