The Future of Batteries

The Future of Batteries:

Graphene as a Sustainable Solution to the Lithium Crisis

In the last decade, the global increase in demand for lithium-ion batteries has been driven by the growing popularity of electronic devices, from portable devices such as tablets, consoles, and cell phones to electric vehicles. According to the International Monetary Fund, it is estimated that by 2050 the demand for batteries will exceed supply by 40%, posing a potential crisis for industries that depend on them if viable alternatives are not implemented.

The issues with lithium-ion batteries are not limited to supply-demand balance. Lithium is a finite resource whose extraction and disposal have negative impacts on the environment and human health. Additionally, batteries present significant safety risks such as instability, overcharging, overheating, and fires.

Graphene, a two-dimensional nanomaterial of carbon with an extremely thin, transparent, and strong sheet structure, has captured the attention of battery experts. Its unique architecture allows for high electrical conductivity and chemical stability, essential characteristics for improving the performance of lithium-ion batteries (LIB), lithium-sulfur batteries (LSB), and lithium-oxygen batteries (LOB).

Benefits of Graphene in Batteries:

  1. Increased Energy Storage Capacity: Graphene has a structure with an extensive surface area, facilitating a greater number of intercalation sites for lithium ions. This translates into a significant improvement in the energy storage capacity of batteries.
  2. Improved Electrical Conductivity: Graphene’s π-π bonds allow efficient electron transport between the active materials of the electrodes and the current collectors. This reduces the internal resistance of the batteries and improves their power output, which is crucial for applications requiring high charge and discharge rates.
  3. Enhanced Stability and Durability: Graphene promotes the stability of electrode materials by preventing premature degradation during charge and discharge cycles. This not only extends the lifespan of batteries but also ensures greater cyclic stability, maintaining consistent performance over time.

Future Perspectives and Alternatives: Despite the continuous growth of the lithium-ion battery market, their environmental risks and technical limitations are driving research towards more sustainable and efficient alternatives. Some of these alternatives include sodium/sulfur-based battery systems, chitin/zinc, silicon/carbon, and combinations of graphene with other advanced materials.

At Energeia-Graphenemex, we are proud to be at the forefront of these innovations, exploring how graphene and other nanotechnological materials can continue transforming the battery industry and contributing to a cleaner and more sustainable energy future.

Writing: EF/ DHS

References:

  1. A. Ali, P.K. Shen, Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: fundamentals to applications, Carbon Energy 2 (2020) 99.
  2. A. Ali, P.K. Shen, Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting, Electrochem. Energy Rev. 3 (2020) 370;
  3. A. Ali, P.K. Shen, Recent advances in graphene-based platinum and Palladium electrocatalysts for the methanol oxidation reaction, J. Mater. Chem. 7 (2019) 22189–22217; 4. Moreno-Brieva, Fernando, & Merino-Moreno, Carlos. (2020). Scientific and Technological Links from Samsung On Lithium Batteries and Graphene. Journal of technology management & innovation, 15(4), 81
  4. Yu Yang, Renjie Wang, Zhaojie Shen, Quanqing Yu, Rui Xiong, Weixiang Shen, Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal  strategy for thermal runaway, Advances in Applied Energy, 11, 2023, 100146
  5. https://www.hibridosyelectricos.com/coches/grafeno-baterias-coches-electricos_69751_102.html
  6. https://rpp.pe/columnistas/fernandoortegasanmartin/grafeno-vs-litio-el-futuro-de-las-baterias-automotrices-noticia-1391824
  7. https://www.energymonitor.ai/tech/energy-storage/graphene-is-set-to-disrupt-the-ev-battery-market/
  8. https://www.eleconomista.com.mx/opinion/Datos-sobre-el-mercado-de-smartphones-en-Mexico-20240131-0117.html