Innovations in Water Technologies:
The Impact of Graphene
As of June 2024, the National Institute of Statistics and Geography (INEGI) recorded that around 50% of Mexican territory was in severe drought, 30% in extreme drought, and 11% in exceptional drought, significantly impacting not only the supply of drinking water—only 52.3% of the population in Mexico has this service—but also numerous economic activities such as the agricultural and livestock sectors.
However, the water crisis is not a national issue alone. According to WHO/UNICEF, over 2000 million people worldwide lack access to potable water. These organizations have defined sustainable development goals for 2030 to ensure water availability, critical for improving hygiene education; protecting and restoring ecosystems; using water resources efficiently; investing in infrastructure and sanitation facilities; and promoting new water technologies, such as irrigation systems, rainwater collection, and treatment and reuse methods.
One such technology is nanotechnology, revolutionized 20 years ago by the isolation of graphene, a multifunctional carbon-based nanomaterial in the diamond and graphite family. Numerous studies have evaluated its effects on materials used in water technologies, such as filtration membranes and flocculants. Graphene’s extraordinary physicochemical characteristics, which can be controlled and shared with other three-dimensional materials, sparked interest. Initial studies as a nanofiller in primarily polymeric matrices revealed significant mechanical, antiadhesive, antifriction, antimicrobial, and filtering improvements. These enhancements increased its lifespan, reduced organic matter buildup on surfaces, and maintained consistent water flow and filtration efficiency.
For example, researchers from the Indian Institute of Technology Madras and Tel Aviv University in Israel successfully developed a silica aerogel with graphene oxide for wastewater decontamination. Meanwhile, scientists from Palacký University in Olomouc, Czech Republic, under the 2D-CHEM project funded by the European Research Council’s Graphene Flagship, designed acid graphene synthesized from fluorographene to remove heavy metals like lead and cadmium, as well as noble metals like palladium, gallium, and indium.
Notably, the promising research results on graphene in water technologies have moved from laboratories to the market. Companies exploiting its benefits include the Australian company CLEAN TEQ WATER, specializing in water treatment with presence in Melbourne, Beijing, Tianjin, and Africa. Its subsidiary NematiQ successfully developed graphene nanofiltration membranes that are more durable and energy-efficient, recently receiving the WaterMark certification as a safe product for water filtration. The British company EVOVE, formerly known as G2O Water Technologies, utilizes hydrophilic graphene oxide coatings to enhance the performance of conventional ceramic or polymeric membranes.
Finally, collaborative efforts between Graphene Flagship scientists and European leaders in water purification, such as Icon Lifesaver, Medica SpA, and Polymem S.A, through the GRAPHIL project, aim to introduce a new filtration system using hollow fiber polymer membranes mixed with graphene for safe potable water management, primarily for domestic use.
Graphene’s advancements are gradually gaining ground beyond academic borders to address one of the world’s most pressing issues. Energeia-Graphenemex®, a pioneering Mexican company in Latin America in the production and development of graphene materials applications, collaborates with other companies and research centers to find strategies to improve water availability and quality, aiming to bring new graphene applications to the market in the short term.
Author: EF/DHS