Mejorando la protección y la productividad agrícola

Mejorando la protección y la productividad agrícola

gracias a las películas plásticas con óxido de grafeno

Las aplicaciones de los materiales plásticos son muy diversas, para el uso en agricultura destaca la formulación y desarrollo de películas plásticas para cubiertas de invernaderos, macrotúneles y microtúneles y para el acolchado de suelos. Entre los materiales plásticos más utilizados se encuentran el Polietileno Lineal de Alta Densidad (HDPE), Etilvinilacetato (EVA), en el caso de cubiertas para estructuras, y el Polietileno Lineal de Baja Densidad (LLDPE) como polímero principal para la fabricación de películas para acolchado de suelos.

Las películas de plástico con capacidad para convertir y transmitir energía solar son materiales de gran interés para aplicaciones fototérmicas en agricultura. En este sentido, el desarrollo de películas de acolchado con buenas propiedades mecánicas y propiedades de conversión fototérmica adecuadas para el campo agrícola sigue siendo una demanda urgente.

En años recientes, el grafeno, ha atraído una considerable atención debido a su singular estructura en láminas, sus extraordinarias propiedades fototérmicas y sus propiedades mecánicas.

Para mejorar la eficiencia de la conversión solar de las películas plásticas, se puede incorporar nanomateriales a base de carbono como: el grafeno (GnP), óxido de grafeno (GO) y oxido de grafeno reducido (RGO), debido a que poseen una excelente capacidad de absorción de luz con un amplio rango espectral (desde el ultravioleta hasta el infrarrojo cercano), y pueden convertir la energía luminosa en energía térmica (propiedad fototérmica).

Desarrollos recientes en la formulación de las películas, buscan el bloqueo de la radiación UV, el efecto de flourescencia, películas ultratérmicas y películas más impermeables. Otras propiedades claves deseadas en las películas plásticas son resistencia mecánica (mayor durabilidad), propiedades ópticas y efecto antigoteo.

Estudios recientes, han reportado los valores de permeabilidad al vapor de agua (WVP) en películas plásticas compuestas con grafeno a diferentes concentraciones (0, 2, 4, 6 y 8% en peso). Donde se encontró que la permeabilidad al vapor de agua en las películas disminuye continuamente (mejora la propiedad barrera) conforme se incrementa la concentración de grafeno en las películas. Esta evaluación se realizo a diferentes porcentajes de humedad relativa (RH), donde se pudo observar buen desempeño en la propiedad de barrera en diferentes porcentajes de humedad (32%, 55% y 76%), ver Fig. 1.

Cuando el contenido de grafeno aumenta hasta 8 % en peso, la WVP de las películas compuestas disminuye de 3.9 x10-10, 5.5 x10-10, y 7.6 x10-10g/m·h·Pa a 0.6 x10-10, 0.8 x10-10, y 1.2 x10-10g/m·h·Pa a 32%, 55% y 76% de humedad relativa, respectivamente. Esta disminución en la permeabilidad está asociada, a que el grafeno forma barreras a nivel molecular en las películas plásticas, dando origen a caminos más tortuosos para la difusión de las moléculas de vapor de agua o de moléculas de oxígeno, limitando su transportación a través de la película plástica. Esta disminución también puede evitar en gran medida la evaporación y perdida de agua, un recurso muy valioso en estos tiempos de escases.

En la Fig. 2, se muestra las curvas de tensión de las películas compuestas con grafeno. Se encontró que la resistencia a la tensión de las películas con grafeno (2-8 % en peso), incremento hasta 22.6 MPa en comparación con la película virgen o control (18.3 MPa). Mientras que el Modulo de Young incremento continuamente de 95.7 a 171.2 MPa con el contenido de grafeno de 0 a 8% en peso, estos resultados muestran una mejora en la resistencia mecánica.

Desde el punto de vista del horticultor, las propiedades mecánicas más relevantes son: la resistencia a la tracción, al rasgado y al impacto. La resistencia a la tensión valora la capacidad de la película para soportar esfuerzos de tensión y es muy importante durante el montaje de la película en el acolchado.

En cuanto a los avances en los compuestos poliméricos con grafeno y derivados en aplicaciones de conversión de energía solar. La Fig. 3 ilustra la eficiencia de conversión fototérmica de las películas en la superficie del suelo. Se observó que la eficiencia de conversión fototérmica de las películas compuestas con grafeno aumenta gradualmente con el contenido de grafeno.

Las películas compuestas a concentraciones de 2,4,6 y 8 % en peso de grafeno, mostraron una eficiencia en conversión fototérmica mayor (10.1, 19, 26 y 40.3%) que la película control (6.7%) para una temperatura de 27°C, lo que indica que las películas compuestas de grafeno pueden adsorber la luz de forma eficaz y pueden convertir la energía luminosa en suministro térmico que puede aumentar rápidamente la temperatura del suelo.

Curiosamente todas las películas compuestas con grafeno mostraron un mejor rendimiento de conversión fototérmica para aumentar la temperatura del suelo en comparación con el grupo de control. Estos resultados indican que las películas compuestas poseen buenas propiedades mecánicas y adecuadas propiedades de conversión fototérmica que pueden utilizarse potencialmente en películas de acolchado para mejorar la temperatura del suelo y mantener la humedad del suelo, lo que es beneficioso para el crecimiento y la producción de los cultivos agrícolas.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con grafeno (concentrado de grafeno), con polímeros de gran uso en la agricultura y/o horticultura, como LLDPE, LDPE, y HDPE. Nuestros Masterbatches son materiales granulados que actúan como refuerzos multifuncionales para la elaboración de películas plásticas más resistentes de menor permeabilidad y con alto grado de conversión fototérmica.

Referencias

  1. Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. P. Khanam, M.A. AlMaadeed, M. Ouederni, E. HarkinJones, B. Mayoral, A. Hamilton, D. Sun. 2016, Vacuum , Vol. 130, págs. 63-71.
  2. Sun, Q., Geng, Z., Dong, J., Peng, P., Zhang, Q., Xiao, Y., & She, D. (2020). Graphene nanoplatelets/Eucommia rubber composite film with high photothermal conversion performance for soil mulching. Journal of the Taiwan Institute of Chemical Engineers.
  3. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, J. H. Lee. 2012, Polymer Testing, Vol. 31, págs. 31-38.

El ingrediente que transformará la industria del plástico

El ingrediente que transformará la industria del plástico:

Descubre los beneficios de los masterbatches de grafeno de Graphenemex

La industria del plástico constantemente demanda nuevos refuerzos o aditivos, que permitan la mejora de los materiales plásticos, tanto de uso comercial como de Ingeniería. En años recientes, se ha impulsado el uso de grafeno y sus derivados (oxido de grafeno, GO) como nuevos refuerzos para diferentes matrices poliméricas.

El grafeno es un nanomaterial (partícula nanométrica) que posee extraordinarias propiedades eléctricas, ópticas, térmicas y una elevada resistencia mecánica. Las propiedades del grafeno son atribuidas a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono.

La incorporación de materiales grafénicos en los polímeros, permite desarrollar compuestos poliméricos con mayor resistencia mecánica, mayor resistencia al impacto, resistencia a la radiación UV y con mayor estabilidad térmica, entre otras propiedades. Lo anterior, permite la obtención de mejores materiales, con gran potencial y una amplia gama de aplicaciones para diferentes sectores (automotriz, aeroespacial, electrónica o embalaje).

En general cuando hablamos de compuestos poliméricos tradicionales, son materiales que contienen una cantidad (~ 40 %) de refuerzo en la matriz polimérica. En contraste, los compuestos poliméricos con grafeno (nanocompositos), el grafeno logra mejora las propiedades del polímero con el uso de bajas concentraciones (< 2 % peso), como refuerzo. Diversas investigaciones han mostrado que los polímeros funcionalizados con materiales grafénicos proporcionan mejoras en las propiedades mecánicas, térmicas y eléctricas. Por ejemplo en:

  • Compuestos de Polipropileno / Grafeno, mostraron un incremento en modulo de flexión (30%) y un incremento en la resistencia al impacto (40 %) con respecto a otros compositos comerciales.
  • Compuesto de Polietileno / Grafeno, mejora la resistencia a la tensión (17 %), resistencia a la flexión y resistencia a la ruptura (66%).
  • Compuestos de Poliestireno/grafeno, mostraron un incremento en la conductividad eléctrica a temperatura ambiente de 0.1 a 1 S/m.

Además de lo mencionado anteriormente, es importante indicar que los materiales grafénicos funcionan como agentes de nucleación en polímeros semicristalinos. Una de las características más importantes de los polímeros semicristalinos es el grado de cristalinidad. Muchas propiedades están influenciadas por el grado de cristalinidad de los polímeros.

Mientras la cristalinidad en los metales y cerámicos implica la disposición u ordenamiento de átomos e iones, en los polímeros implica la ordenación de moléculas y, por tanto, la complejidad es mayor. La cristalinidad polimérica puede considerarse como el empaquetamiento de cadenas moleculares para producir una disposición atómica ordenada. Debido a que las moléculas poliméricas son de gran tamaño y complejas, suelen ser parcialmente cristalinas (semicristalinas) con regiones cristalinas dispersas dentro de un material amorfo. En la región amorfa aparecen cadenas desordenadas, condición muy común debido a las torsiones, pliegues y dobleces de las cadenas que impiden la ordenación de cada segmento de cada cadena.

En general, son pocos los polímeros que poseen una estructura suficiente para cristalizar y aún en esos casos, nunca es posible lograr un 100% de estructura cristalina y se tiene que determinar el grado de cristalización (Xc), es decir, la fracción del polímero que presenta estructura cristalina con relación al polímero total, el resto será amorfa.

La tendencia general de la adición de agentes nucleantes en las matrices poliméricas es la aceleración o retardo de la cristalización, cambios en el tamaño de las esferulitas, cambios en la morfología y en algunos casos cambios en la estructura del cristal. Si nos enfocamos en el efecto de los materiales grafénicos sobre la cristalinidad de los polímeros, podemos resumir que; los materiales grafenicos permiten controlar el tamaño de las esferulitas (crecimiento de cristal) en los compuestos poliméricos, lo que con lleva a controlar las zonas cristalinas, que son las responsables de la resistencia mecánica, y las zonas amorfas (asociadas a la flexibilidad y elasticidad del material). Además de que mejoran la adhesión interfacial en matrices poliméricas con grupos polares, como el nylon 6,6.

Por otro lado, otra ventaja de los materiales grafénicos como agente nucleante en los compuestos poliméricos, es que la temperatura de cristalización (Tc) se incrementa conforme aumenta la cantidad de grafeno debido a que se promueve la cristalización de la masa fundida, es decir, se necesita menos energía para enfriar el polímero fundido, lo que ahorra tiempo y energía.

A.    Enlace intramolecular en Nanocompuestos de  Nylon 6,6/GO. B. Termogramas DSC. Enfriamiento: (a) PA66, (b) PA66/01RGO, (c) PA66/05RGO, (d) PA66/10RGO, (e) PA66/01GO,  (f) PA66/05GO, (g) PA66/10GO. Tomado de Materials 2013,6.2

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con grafeno, basados en varios polímeros, como PP, HDPE, LDPE, PET y PA6. Nuestros Masterbatches son materiales granulados que actúan como refuerzos multifuncionales y agentes nucleantes efectivos.

Referencias

  1. Gong, L., Yin, B., Li, L., & Yang, M. (2015). Nylon-6/Graphene composites modified through polymeric modification of graphene. Composites Part B: Engineering, 73, 49–56.
  2. Fabiola Navarro-Pardo, Gonzalo Martínez-Barrera, Ana Laura Martínez-Hernández, Víctor M. Castaño. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials 2013, 6.
  3. Zhang, F.; Peng, X.; Yan, W.; Peng, Z.; Shen, Y. Nonisothermal crystallization kinetics of in-situ nylon 6/graphene composites by differential scanning calorimetry. J. Polym. Sci. Part B. Polym. Phys. 2011, 49, 1381–1388.
  4. Yun, Y.S.; Bae, Y.H.; Kim, D.H.; Lee, J.Y.; Chin, I.J.; Jin, HJ. Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon 2011, 49, 3553–3559.
  5. Cheng, S.; Chen, X.; Hsuan, Y.G.; Li, C.Y. Reduced graphene oxide induced polyethylene crystallization in solution and composites. Macromolecules 2012, 45, 993–1000.

Innovación en la producción de materiales compuestos: el uso del grafeno en la pultrusión

Innovación en la producción de materiales compuestos:

el uso del grafeno en la pultrusión

Los compuestos poliméricos reforzados con fibra son utilizados ampliamente en los sectores aeroespacial, automovilístico, naval y de generación de energía eólica debido a sus propiedades de ligereza y alta resistencia mecánica. Estos materiales son una alternativa en auge para sustituir a otros materiales como los metales.

En la actualidad existen diferentes métodos para la fabricación de compuestos reforzados con fibras, entre los que destaca el método de pultrusión. Un método altamente eficiente y automatizado que permite el control de los parámetros del proceso (mayor precisión y exactitud), reduciendo la variabilidad en la producción de las piezas.

La pultrusión es un proceso de producción de materiales reforzados donde se pueden distinguir dos componentes, la matriz o fase continua y el refuerzo o fase discontinua. La matriz actúa como un agente de adhesión, en la que el refuerzo queda embebido. Las funciones de la matriz, es transferir la carga a las fibras, mantener las fibras en su posición, evitar la propagación de fisuras, proveer propiedades físicas y químicas del compuesto y también delimita el rango de temperatura que podra soportar el material compuesto. La matriz es termoestable o termofija (poliéster insaturado, resinas epoxi o resinas vinil-ester). Por otro lado, el refuerzo tiene como propósito agregar alguna propiedad que la matriz no posea, como incrementar la resistencia mecánica, la rigidez, la resistencia a la abrasión o mejorar su desempeño cuando es expuesto a temperaturas elevadas. La eficiencia del refuerzo es mayor, cuanto menor sea el tamaño de las partículas o el diámetro de la fibra y más homogéneamente estén distribuidas en la matriz. Las fibras más utilizadas son de vidrio, carbono y aramida debido a su alta resistencia de tracción.

El proceso de pultrusión (Figura 1), es continuo y se utiliza para la fabricación de piezas con un perfil transversal constante, como postes, varillas, molduras automotrices, etc. En la primera etapa de alimentación las fibras de refuerzo pasan por una placa perforada para su alineación, después pasan por un pre-moldeo donde se agrega un tejido para reforzar la fibra. Después en la segunda etapa, las fibras se impregnan de resina liquida y pasan a una etapa de pre-formado donde se orientan las fibras antes de entra al molde. En la tercera etapa (moldeado), se da forma a la sección transversal de la pieza y mediante la aplicación de calor se endurece la resina. Durante la aplicación de calor en el molde, hay tres fases: pre-calentamiento de la matriz y del refuerzo, activación del catalizador de polimerización y curado del material. Después, el perfil sale del molde como material termofijo y pasa hacia un mecanismo de tracción continuo que tira o jala el material a una velocidad constante (cuarta etapa)). Finalmente, en la quinta etapa, una sierra de disco corta el perfil con la longitud deseada. El perfil del compuesto reforzado obtenido es un material completamente rígido, que no se reblandece e insoluble con capacidad de soportar temperaturas elevadas.

Figura 1. Esquema General del proceso de pultrusión: (1) Alimentación, (2) Impregnación, (3) Moldeo, (4) Dispositivo de tracción y (5) Sierra (Corte).

Actualmente las principales aplicaciones de este proceso se centran en la fabricación de materiales para la construcción, transporte y consumibles, por ejemplo: construcción de vehículos, aislante térmico, conductos para cable, cubiertas y rejillas para plantas de tratamiento de aguas, perfiles para vigar, fachadas de edificios, ventanas, puentes, escaleras, entre otros.

Sin embargo, aún existen limitantes en esta tecnología, la baja interacción química de la fibra con la matriz (resina) conduce a una fuerza de unión de interfaz débil entre ambas fases (baja adhesión química), lo que hace que hace que el comportamiento de cizallamiento interlaminar y desempeño de los materiales compuestos no sea del todo satisfactorio. Es decir, si la matriz es frágil se puede generar una rotura espontánea, este comportamiento permite medir la resistencia a la cizalladura interlaminar. Dependiendo del tipo de rotura, se puede caracterizar la resistencia del material de la matriz o la calidad de la unión fibra-matriz.

En años reciente, se ha reportado que la introducción de óxido de grafeno (GO) funcionalizado sobre la superficie de las fibras es un método eficaz para mejorar las propiedades interfaciales de los materiales compuestos, ya que la gran área superficial del óxido de grafeno permite cubrir la superficie de las fibras, incrementando la fuerza de unión química entre la fibra y la matriz, mejorando con ello la resistencia mecánica de los compuestos reforzados. Además, el óxido de grafeno ayuda a mejorar la resistencia a la fractura interlaminar del material compuesto, inhibiendo la iniciación y propagación de grietas.

La adición de óxido de grafeno a los compuestos poliméricos reforzados ofrece numerosas ventajas para el desarrollo de materiales avanzados en una gran variedad de aplicaciones debido a su gran área superficie, la cual tiene un fuerte impacto sobre las propiedades de resistencia mecánica, mejorar en gran medida propiedades tales como módulo, tenacidad y fatiga. Por otro lado, el óxido de grafeno puede proveer a los compuestos mayor resistencia al fuego. Su eficiencia está asociada que el óxido de grafeno tiene un fuerte efecto barrera, alta estabilidad térmica y gran capacidad de absorción superficial que son favorables para reducir eficazmente la transferencia de calor y masa.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, tiene a la venta grafeno y óxido de grafeno que puede incorporar o dispersar en cualquier matriz (resina) durante el proceso de pultrusión y con ellos mejorar las propiedades mecánicas de los perfiles o productos.

La incorporación de materiales grafénicos (grafeno, óxido de grafeno) en el proceso de pultrusión, brindan mejoras en las características del producto final, que incluyen:

  • Mayor resistencia a la tracción. La resistencia a la tensión puede incrementar hasta en un 30% con respecto a un perfil estándar sin grafeno.
  • Producción de perfiles de menor peso, ya que el grafeno permite reducir el peso del producto sin afectar sus propiedades mecánicas.
  • Perfiles con mayor módulo de elasticidad.
  • Mayor resistencia a la corrosión y propiedades ignifugas.
  • Mayor resistencia a fracturas o fisuras.

Referencias

  1. Yuxin He, Qiuyu Chen. Effect of multiscale reinforcement by fiber surface treatment with polyvinyl alcohol/graphene oxide/oxidized carbon nanotubes on the mechanical properties of reinforced hybrid fiber composites. Composites Science and Technology 204 (2021).108634.
  2. Jonas H. M. Stiller, Kristina Roder, David Lopitz. Combining Pultrusion with carbonization: Process Analysis and materials properties of CFRP. Ceramics 2023, 6. 330-341.
  3. Dittrich B, Wartig K-A, Hofmann D, Mu¨lhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495.

Mejora la seguridad con compuestos poliméricos retardantes a la llama con óxido de grafeno

Mejora la seguridad con compuestos poliméricos

retardantes a la llama con óxido de grafeno

Los compuestos poliméricos (plásticos de ingeniería) son utilizados ampliamente en la industria automotriz, la construcción, la industria alimenticia, la aeroespacial y otros sectores. Su uso esta basado en la relación peso/resistencia, estabilidad física, resistencia química y resistencia a la corrosión.

Sin embargo, la mayoría de los polímeros, debido a su naturaleza, son inflamables y combustibles. Es decir, son materiales que se incendian rápidamente cuando son expuestos al fuego, sufriendo degradación y liberación calor para posteriormente iniciar la propagación de las llamas. Durante la combustión de los polímeros, liberan humo (hollín) y gases tóxicos que son un peligro para la seguridad de la vida humana y los bienes materiales.


Durante la combustión de materiales poliméricos intervienen cuatro componentes clave: calor, oxígeno, combustible y reacción de radiales libres. La retardancia a la flama de los materiales compuestos poliméricos puede conseguirse inhibiendo o perturbando uno o varios de estos componentes.


En los últimos años, se han realizado múltiples investigaciones para desarrollar aditivos que ayuden a inhibir o reducir la inflamabilidad de los polímeros, estos aditivos son conocidos como retardantes a la flama.

Los retardantes a la flama convencionales pueden clasificarse en dos principales categorías, en función de sus componentes: retardantes de flama inorgánicos y retardante de flama orgánicos. Los primeros incluyen hidróxido, óxido metálico, fosfato, silicato entre otros. Tiene excelente estabilidad térmica, no son tóxicos, son de bajo costo y no producen contaminación. Sin embargo, los retardantes de flama inorgánicos están limitados por elevada carga, baja compatibilidad y agregación. Por otro lado, los retardantes de flama orgánicos incluyen retardantes de flama que contienen halógenos, fósforo, fósforo-nitrógeno, etc. Estos últimos presentan alta eficacia y buena compatibilidad con los polímeros. Su principal desventaja es que tienen restricción porque pueden liberar gases tóxicos y ser nocivos durante la combustión, poniendo en peligro la salud de las personas y el medio ambiente.

Actualmente el óxido de grafeno (GO), es el nanomaterial más novedoso para su uso como retardante de flama, debido a que exhibe alta eficacia como retardante con bajas cargas y no es tóxico. Su eficiencia está asociado que el óxido de grafeno tiene un fuerte efecto barrera, alta estabilidad térmica y gran capacidad de absorción superficial que son favorables para reducir eficazmente la transferencia de calor y masa.

Los retardantes de flama a base de grafeno pueden mejorar la resistencia a la flama de los polímeros mediante la inhibición de los dos términos clave: calor y combustible. Más concretamente, el óxido de grafeno puede funcionar como retardante de flama de diferentes formas sinérgicas.

  1. En primer lugar, el GO posee una estructura de capas bidimensional única y puede promover la formación de una densa capa continua de carbón durante el proceso de combustión. El carbón puede actuar como barrera física para impedir la transferencia de calor desde la fuente de calor y retrasar el escape de productos (pirolisis) del sustrato polimérico.
  2. En segundo lugar, el GO tienen una gran área superficial específica y puede adsorber eficazmente compuestos orgánicos volátiles inflamables o dificultar su liberación y difusión durante la combustión.
  3. En tercer lugar, el GO contienen abundantes grupos reactivos que contienen oxígeno (grupo carboxilo en los bordes, así como grupos epoxi e hidroxilo en los planos basales en las láminas). Por ejemplo, los grupos que contienen oxígeno pueden sufrir descomposición y deshidratación a baja temperatura, absorbiendo así calor y enfriando el sustrato polimérico durante la combustión. Mientras tanto, los gases generados por deshidratación pueden diluir la concentración de oxígeno alrededor de la periferia de ignición, disminuyendo el riesgo de propagación de fuego.
  4. También puede modificar el comportamiento reológico del polímero e impedir su goteo, dificultando así la liberación y difusión de productos volátiles de descomposición a través del ”efecto laberinto” y afectando a la retardancia a la flama de los compuestos (por ejemplo, modificando la clasificación UL-94, el índice de oxígeno (OI) y el tiempo de ignición (TTI).

En estudios realizados, se ha encontrado que la incorporación de óxido de grafeno funcionalizado (5 % en peso) en Polipropileno (PP), incremento el módulo de Young y el límite elástico del PP en un 53 % y un 11 %, respectivamente. Mientras que en los resultados de la prueba de flamabilidad (UL-94), indica que la presencia de GO produce un cambio en el comportamiento de la masa fundida y evita que el material gotee.

Por otro lado, se han reportado la preparación de compuestos poliméricos en mezclado en fundido (extrusión), de Poliestireno/GO, donde se encontró que el GO (5 %) puede promover la carbonización en la superficie del polímero (capa de material carbonizado) y en el interior la presencia de un carga o relleno que presenta alta resistencia al calor y contribuye a la formación de residuos de carbón, mejorando la resistencia a la flama de los compuestos a base de poliestireno.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con óxido de grafeno, basados en varios polímeros, como PP, HDPE, LDPE, PET y PA6.

La incorporación de grafeno y derivados de grafeno (GO) a matrices poliméricas, ha permitido el desarrollo de compuestos poliméricos con mejores propiedades mecánicas, con mayor estabilidad térmica, capacidad de barrera contra gases y reducir la flamabilidad de los compuestos poliméricos.


Referencias

  1. Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214.
  2. Hofmann D, Wartig K-A, Thomann R, Dittrich B, Schartel B, Mu¨lhaupt R. Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene. Macromol Mater Eng 298:1322.
  3. Dittrich B, Wartig K-A, Hofmann D, Mu¨lhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495.

Innovación en la industria plástica: cómo los masterbatches de grafeno están cambiando el juego

Innovación en la industria plástica:

cómo los masterbatches de grafeno están cambiando el juego


El grafeno posee extraordinarias propiedades eléctricas, ópticas, térmicas y una elevada resistencia mecánica. Las propiedades del grafeno son atribuidas a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono.


Hoy en día, el grafeno es el aditivo nanotecnológico más prometedor en la industria del plástico.  La incorporación de grafeno y sus derivados (oxido de grafeno, GO) en diferentes matrices poliméricas (masterbatches), poseen un gran potencial para una amplia gama de aplicaciones. El masterbatch con grafeno, puede actuar como refuerzo mecánico o aditivo conductor tanto para materiales termoplásticos como termoestables. Pueden utilizarse en el sector automotriz, aeroespacial, electrónica o embalaje.


Los compuestos poliméricos a base de grafeno han mostrado mejoras significativas en propiedades como el módulo elástico, resistencia a la tensión, resistencia al impacto, conductividad eléctrica, resistencia a la radiación UV, estabilidad térmica, propiedad antimicrobiana, impermeabilidad o efecto barrera (no permite la difusión de humedad u otras moléculas).


Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con grafeno, basados en varios polímeros, como PP, HDPE, LDPE, PET y PA6.


Nuestros Masterbatches son materiales granulados que actúan como aditivos multifuncionales. La incorporación de grafeno en diferentes matrices poliméricas ha mostrado efectos importantes sobre las propiedades y condiciones de procesamiento de los plásticos, entre las que destacan:


  • Incremento en la resistencia a la tensión, deformación e impacto
  • Incremento en la resistencia a rayos ultravioleta
  • Excelente dispersión
  • Mejora las condiciones de procesamiento (estabilidad térmica)
  • Actúa como agente nucleante (modificación de la temperatura de cristalización del polímero)


En este sentido, se ha encontrado que la incorporación de grafeno y sus derivados, asi como la concentración, puede modificar las propiedades fisicomecánicas del polímero a procesar.  La adición de masterbatch a diferentes polímeros, ha mejorado en menor o mayor proporción las características finales del material, por ejemplo:


  • Aditivación de Polipropileno (PP) con masterbatch de polipropileno -grafeno (MB-PP/GO), aumenta la resistencia a la tensión (8 %) y porcentaje de ruptura (29 %).
  • Aditivación de Polietileno (PE) con masterbatch de polietileno -grafeno (MB-PE/GO), mejora la resistencia a la tensión (17 %), resistencia a la flexión y resistencia a la ruptura (66%).
  • Aditivación de Polietilen tereftalato (PET) con masterbatch de Polietilen tereftalato -grafeno (MB-PET/GO), mejora la resistencia a la humedad, incrementa la resistencia a la tensión (72.2 %) y mejora la resistencia al impacto.
  • Aditivación de Policarbonato (PC) con masterbatch de policarbonato -grafeno (MB-PC/GO), mejora la resistencia a la humedad y mejora la resistencia a la ruptura (276 %).


Por otro lado, los masterbatches con grafeno también pueden ser incorporados a polímeros reciclados. En la actualidad, la reutilización y el reciclado de materiales plásticos son de vital importancia en el camino de transición hacia una economía circular. En este aspecto, el constante lavado, peletizado y reprocesamiento pueden producir la pérdida de propiedades fisicomecánicas de los plásticos reciclados, por lo que, al añadir grafeno, se puede restaurar o mejorar dichas propiedades. En aplicaciones agrícolas, se puede producir películas para acolchados con mayor resistencia a la radiación ultravioleta.


Referencias

  • Fang, M., et al., Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry. 19(38): p. 7098-7105.
  • Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules. 43(16): p. 6515-6530.
  • Balandin, A.A., et al., Superior Thermal Conductivity of Sin gle-Layer Graphene. Nano Letters, 8(3): p. 902-907.
  • Nabira Fatima, Umair Yaqub Qazi, Asim Mansha., Recent developments for antimicrobial applications of graphene-based polymeric composites: A review, https://doi.org/10.1016/j.jiec.2021.04.050

El grafeno y su impacto en la industria del packing

El Grafeno

y su impacto en la industria del packing

De acuerdo con datos del Banco Mundial, cada año en México se desperdician 24 millones de toneladas de alimentos. Esto significa que, el 34% de la producción del país no solo NO es consumida, sino que además genera un gasto promedio de 491 mil millones de pesos.

Este impacto no solo es económico, sino que es un problema que se extiende al ámbito social, por la conocida crisis alimentaria y al medio ambiente, por los elevados requerimientos de agua para los procesos de producción de alimentos que no serán aprovechados y cuya descomposición aportará emisiones considerables de CO2 que contribuyen al calentamiento global.

Según la Organización de las Naciones Unidas para la Agricultura y la Alimentación, la pérdida y desperdicio de alimentos supera los 1,300 millones de toneladas anuales.

Dentro de esta problemática multifactorial, la industria del envase y embalaje, también conocida como “packing”, es un actor crucial considerando que existen condiciones inevitables como temperatura, humedad, iluminación, oxígeno y numerosas prácticas de manipulación a lo largo de toda la cadena de producción de los alimentos, que afectan su calidad, vida útil y la aceptabilidad por parte de los consumidores.

En la búsqueda de soluciones para mejorar la calidad de los productos para packing y, en consecuencia, de su contenido, la nanotecnología ha sido un gran aliado. Por ejemplo, para evitar la contaminación microbiana se utilizan nanopartículas de plata, de dióxido de titanio, de óxido de cobre, nanotubos de carbono u óxido de magnesio; para mejorar las propiedades mecánicas o de barrera, es común el uso de nanopartículas de silicato, arcilla, poliamida, hierro u óxidos de hierro, nanofibras de celulosa y para otras necesidades existen las nanopartículas de tungsteno, molibdeno, sulfato de bario, titanato de bario, quitosano, zeolitas, carbón activo, etc.

Las nanopartículas de Grafeno están conformadas principalmente por carbono al igual que el grafito y el diamante, pero con características multifuncionales. Esto quiere decir que, no tienen una única función, sino que, a diferencia de otras nanopartículas, el Grafeno por sus extraordinarias propiedades físicas y químicas, puede ser utilizado para distintos objetivos, por ejemplo, para diseñar productos más ligeros y resistentes, con mayor impermeabilidad contra líquidos y gases, además de proteger contra la contaminación microbiana y contra la radiación UV, entre otras propiedades que mejoran sustancialmente el desempeño de los compuestos con los que se combina.



“El Grafeno ha traspasado los límites de lo teórico para llegar a lo aplicado, combatiendo de manera segura y eficiente a los principales enemigos de los alimentos”, estos son algunos ejemplos de lo que se está desarrollando para la industria del Packing:

Tetra Pak
La empresa Sueca Tetra Pak, líder en investigación y desarrollo en el sector de envases, a través del proyecto Europeo Graphene Flagship estudia el uso del Grafeno para la fabricación de productos de bajo impacto ambiental para reducir la huella de carbono, mejorar el rendimiento de los materiales, agregar propiedades y optimizar la reciclabilidad.

Applynano
La empresa española Applynano utiliza nanomateriales, entre ellos el óxido de grafeno para favorecer la durabilidad y reciclabilidad de los plásticos, así como para mejorar las propiedades antimicrobianas, térmicas, eléctricas, entre otras.

Centro Tecnológico del Plástico (Andaltec)
El Centro Tecnológico del Plástico (Andaltec) dentro del proyecto europeo Grafood, tuvo la iniciativa de utilizar derivados del Grafeno para el desarrollo de envases activos para aumentar la vida útil de alimentos y disminuir el desperdicio de alimentos.

Energeia – Graphenemex®
La empresa mexicana Energeia – Graphenemex® a través de la división de polímeros Graphenergy Advanced Graphenic Solutions promueve el uso del Grafeno y sus derivados como nano- refuerzo del plástico para distintas industrias. Entre los beneficios que ofrece para la industria del packing, están la resistencia mecánica y a la degradación por radiación UV, mayor efecto barrera e interesantes propiedades antimicrobianas, sumamente prometedoras para prolongar el tiempo de vida de los productos y de su contenido. Asimismo, además de agregar valor a sus desarrollos con las propiedades multifuncionales del Grafeno y sus derivados, la compañía también tiene como objetivo apoyar otros proyectos de innovación con nanotecnología grafénica, a la vez que busca colaborar con la economía circular para mejorar la calidad de los materiales plásticos nuevos y reciclados, para disminuir el consumo de productos de un solo uso.

Nanocompuestos poliméricos con grafeno: el futuro de la industria

Nanocompuestos poliméricos con grafeno:

el futuro de la industria

Ciudad de México – Gracias a las extraordinarias propiedades, innumerables investigaciones y promesas de negocio en torno al Grafeno en el mundo, en 2021 su mercado fue valuado en 127,12 millones de dólares, previendo una tasa de crecimiento anual de más del 70% en el periodo de 2022 a 2027. Sin embargo, a 18 años de su aislamiento y pese a la enorme competencia por las compañías para desarrollar aplicaciones con este nanomaterial, aún son relativamente pocos los productos disponibles en el mercado que lo contengan y aprovechen sus beneficios. Esto se debe principalmente a la inversión y complejidad para la transformación del grafito en grafeno o en cualquiera de sus variantes (óxido de grafeno y óxido de grafeno reducido), a la dificultad de producción a escala industrial para tenerlo disponible como la materia prima fundamental en la transformación de nuevos compuestos, así como por la necesidad de conocimiento científico- industrial para la creación de aplicaciones eficientes y económicamente viables.

La empresa mexicana Energeia Fusion S.A. de C.V., se ha enfocado en resolver los obstáculos más representativos que el Grafeno ha enfrentado para su llegada al mercado, trabajando arduamente en la creación y estandarización de métodos y procesos propios que al día de hoy le permiten optimizar los recursos para el desarrollo de productos de calidad en corto tiempo.

Nanocompuestos poliméricos con óxido de grafeno

La división de polímeros de la línea Graphenergy Advanced Graphenic Solutions, forma parte de una nueva línea de aditivos nanotecnológicos altamente efectivos para la industria del plástico que, además del valor agregado que representan las propiedades multifuncionales que el grafeno aporta a los polímeros (resistencia mecánica, impermeabilidad, resistencia a radiación Uv y/o actividad antimicrobiana), también agrega valor para la economía circular, ya que permite utilizar, reutilizar y reciclar los productos plásticos, reducir la explotación de los recursos naturales y disminuir la generación de residuos, teniendo como resultado importantes impactos sociales, económicos y ambientales.

¿Cuál es la ciencia del Grafeno para el refuerzo de materiales?

  1. Las fuertes interacciones entre la región interfacial de la matriz polimérica y las partículas nanométricas del grafeno son decisivas para mejorar las propiedades de los materiales,
  2. La correcta integración del grafeno con los materiales poliméricos mejora la organización en su estructura, haciendola más densa y compacta y por lo tanto mejora las propiedades mecánicas.
  3. Mejora las propiedades de barrera contra líquidos y gases, aumenta el tiempo de vida útil del producto y permite tener diversas propiedades en un solo material, como: conductividad, resistencia a la radiación ultravioleta, impermeabilidad, flexibilidad, ligereza, actividad antimicrobiana, etc.

“Las propiedades del Grafeno son tan numerosas como las variables asociadas, por eso es difícil definir una fórmula estándar que satisfaga todas sus expectativas. El reto está en encontrar el equilibrio entre sus propiedades”.

A continuación, se describen algunos de los innumerables efectos y potenciales usos de los materiales grafénicos sobre distintas matrices poliméricas:

Resistencia mecánica

Los materiales grafénicos causan cambios en el comportamiento viscoelástico de los polímeros mostrando mayor resistencia a la elongación, propiedad interesante para el diseño de productos más resistentes a la deformación como productos de sellado, amortiguación, transporte o neumáticos, calzado, deporte, etc. Además de aumentar el módulo elástico, también mejora la resistencia al impacto de los polímeros en el rango del 20 al 200%, con reducciones en peso de hasta 35%, esta propiedad es de interés para la fabricación de productos más ligeros con igual o mayor resistencia que los plásticos convencionales, abriendo la posibilidad de reducir o sustituir el uso de piezas metálicas por piezas plásticas para la industria automotriz, de la construcción, seguridad, entre otras.  

Resistencia a la degradación

Por otro lado, este nanomaterial también ha demostrado otros aportes interesantes, por ejemplo, en pruebas de intemperismo acelerado realizadas a plásticos reforzados con grafeno y/o derivados se ha identificado que el uso de bajas concentraciones puede incrementar hasta 7 veces su resistencia a condiciones extremas de humedad, temperatura y radiación ultravioleta. Además, si consideramos que cuando el plástico es expuesto a la radiación Uv, este emite gases de efecto invernadero (metano y etileno). Por lo tanto, al aumentar la resistencia a la degradación, también podríamos favorecer a la reducción de estas emisiones, sin afectar la capacidad del PET para ser reutilizado o reciclado, sino que, por el contrario, usar grafeno le ofrece más oportunidades de ser reciclado.

Resistencia al fuego

Otra reconocida propiedad del grafeno es que es un excelente conductor térmico. En pruebas realizadas sobre distintos polímeros, aquellos modificados con óxido de grafeno además de mejorar sus propiedades mecánicas también mejoraron el retardo a la flama. Siendo el polipropileno el más beneficiado al identificarse un comportamiento autoextinguible. Esta aportación es atractiva para su aplicación en recubrimientos de cables y alambres eléctricos o materiales plásticos en general que requieran resistencia térmica.

Estas son sólo algunas de las múltiples propiedades que el grafeno y sus derivados puede ofrecer a la industria del plástico y a todas aquellas que se benefician de ella y que, pese a los esfuerzos por disminuir la circulación del plástico debido a los impactos ambientales, las ventajas que ofrece el grafeno pueden ser bien enfocadas para hacer más eficiente la utilización, reutilización y reciclaje del plástico.

A continuación, se describen algunos de los productos plásticos con grafeno que han logrado su comercialización:

  1. Energeia Fusion-Graphenemex a través de su división de polímeros desarrolla Masterbatches con óxido de grafeno para la producción de equipo de protección personal como caretas y telas no tejidas para mascarillas faciales. Asimismo, ha desarrollado polímeros modificados para concreto hidráulico y concreto asfáltico, además de la línea de recubrimientos Graphenergy para protección anticorrosiva y antimicrobiana (México),
  2. Directa Plus diseñó una máscara facial con grafeno para la lucha contra la pandemia causada por SARS- COV2 (Reino Unido),
  3. El productor internacional de ruedas Vittoria desarrolló las ruedas de bicicleta llamadas Qurano (Italia),
  4. Progress, con su modelo Progress Atom LTD brinda un mejor desempeño en cuanto a la resistencia al desgaste, mayor agarre, mayor impermeabilidad, disipación de calor más eficiente y mayor rigidez lateral, con un menor peso (España),
  5. Dassi Bikes construyó la primera bicicleta del mundo fabricada con grafeno (Reino Unido),
  6. FiiO Electronics lanzó auriculares con un controlador de diafragma mejorado con grafeno (China),
  7. NanoCase creó carcasas para smartphone para mejor disipación del calor (China),
  8. Catlike usa grafeno para producir cascos de ciclistas (España).

Referencias