Innovación en la producción de materiales compuestos: el uso del grafeno en la pultrusión

Innovación en la producción de materiales compuestos:

el uso del grafeno en la pultrusión

Los compuestos poliméricos reforzados con fibra son utilizados ampliamente en los sectores aeroespacial, automovilístico, naval y de generación de energía eólica debido a sus propiedades de ligereza y alta resistencia mecánica. Estos materiales son una alternativa en auge para sustituir a otros materiales como los metales.

En la actualidad existen diferentes métodos para la fabricación de compuestos reforzados con fibras, entre los que destaca el método de pultrusión. Un método altamente eficiente y automatizado que permite el control de los parámetros del proceso (mayor precisión y exactitud), reduciendo la variabilidad en la producción de las piezas.

La pultrusión es un proceso de producción de materiales reforzados donde se pueden distinguir dos componentes, la matriz o fase continua y el refuerzo o fase discontinua. La matriz actúa como un agente de adhesión, en la que el refuerzo queda embebido. Las funciones de la matriz, es transferir la carga a las fibras, mantener las fibras en su posición, evitar la propagación de fisuras, proveer propiedades físicas y químicas del compuesto y también delimita el rango de temperatura que podra soportar el material compuesto. La matriz es termoestable o termofija (poliéster insaturado, resinas epoxi o resinas vinil-ester). Por otro lado, el refuerzo tiene como propósito agregar alguna propiedad que la matriz no posea, como incrementar la resistencia mecánica, la rigidez, la resistencia a la abrasión o mejorar su desempeño cuando es expuesto a temperaturas elevadas. La eficiencia del refuerzo es mayor, cuanto menor sea el tamaño de las partículas o el diámetro de la fibra y más homogéneamente estén distribuidas en la matriz. Las fibras más utilizadas son de vidrio, carbono y aramida debido a su alta resistencia de tracción.

El proceso de pultrusión (Figura 1), es continuo y se utiliza para la fabricación de piezas con un perfil transversal constante, como postes, varillas, molduras automotrices, etc. En la primera etapa de alimentación las fibras de refuerzo pasan por una placa perforada para su alineación, después pasan por un pre-moldeo donde se agrega un tejido para reforzar la fibra. Después en la segunda etapa, las fibras se impregnan de resina liquida y pasan a una etapa de pre-formado donde se orientan las fibras antes de entra al molde. En la tercera etapa (moldeado), se da forma a la sección transversal de la pieza y mediante la aplicación de calor se endurece la resina. Durante la aplicación de calor en el molde, hay tres fases: pre-calentamiento de la matriz y del refuerzo, activación del catalizador de polimerización y curado del material. Después, el perfil sale del molde como material termofijo y pasa hacia un mecanismo de tracción continuo que tira o jala el material a una velocidad constante (cuarta etapa)). Finalmente, en la quinta etapa, una sierra de disco corta el perfil con la longitud deseada. El perfil del compuesto reforzado obtenido es un material completamente rígido, que no se reblandece e insoluble con capacidad de soportar temperaturas elevadas.

Figura 1. Esquema General del proceso de pultrusión: (1) Alimentación, (2) Impregnación, (3) Moldeo, (4) Dispositivo de tracción y (5) Sierra (Corte).

Actualmente las principales aplicaciones de este proceso se centran en la fabricación de materiales para la construcción, transporte y consumibles, por ejemplo: construcción de vehículos, aislante térmico, conductos para cable, cubiertas y rejillas para plantas de tratamiento de aguas, perfiles para vigar, fachadas de edificios, ventanas, puentes, escaleras, entre otros.

Sin embargo, aún existen limitantes en esta tecnología, la baja interacción química de la fibra con la matriz (resina) conduce a una fuerza de unión de interfaz débil entre ambas fases (baja adhesión química), lo que hace que hace que el comportamiento de cizallamiento interlaminar y desempeño de los materiales compuestos no sea del todo satisfactorio. Es decir, si la matriz es frágil se puede generar una rotura espontánea, este comportamiento permite medir la resistencia a la cizalladura interlaminar. Dependiendo del tipo de rotura, se puede caracterizar la resistencia del material de la matriz o la calidad de la unión fibra-matriz.

En años reciente, se ha reportado que la introducción de óxido de grafeno (GO) funcionalizado sobre la superficie de las fibras es un método eficaz para mejorar las propiedades interfaciales de los materiales compuestos, ya que la gran área superficial del óxido de grafeno permite cubrir la superficie de las fibras, incrementando la fuerza de unión química entre la fibra y la matriz, mejorando con ello la resistencia mecánica de los compuestos reforzados. Además, el óxido de grafeno ayuda a mejorar la resistencia a la fractura interlaminar del material compuesto, inhibiendo la iniciación y propagación de grietas.

La adición de óxido de grafeno a los compuestos poliméricos reforzados ofrece numerosas ventajas para el desarrollo de materiales avanzados en una gran variedad de aplicaciones debido a su gran área superficie, la cual tiene un fuerte impacto sobre las propiedades de resistencia mecánica, mejorar en gran medida propiedades tales como módulo, tenacidad y fatiga. Por otro lado, el óxido de grafeno puede proveer a los compuestos mayor resistencia al fuego. Su eficiencia está asociada que el óxido de grafeno tiene un fuerte efecto barrera, alta estabilidad térmica y gran capacidad de absorción superficial que son favorables para reducir eficazmente la transferencia de calor y masa.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, tiene a la venta grafeno y óxido de grafeno que puede incorporar o dispersar en cualquier matriz (resina) durante el proceso de pultrusión y con ellos mejorar las propiedades mecánicas de los perfiles o productos.

La incorporación de materiales grafénicos (grafeno, óxido de grafeno) en el proceso de pultrusión, brindan mejoras en las características del producto final, que incluyen:

  • Mayor resistencia a la tracción. La resistencia a la tensión puede incrementar hasta en un 30% con respecto a un perfil estándar sin grafeno.
  • Producción de perfiles de menor peso, ya que el grafeno permite reducir el peso del producto sin afectar sus propiedades mecánicas.
  • Perfiles con mayor módulo de elasticidad.
  • Mayor resistencia a la corrosión y propiedades ignifugas.
  • Mayor resistencia a fracturas o fisuras.

Referencias

  1. Yuxin He, Qiuyu Chen. Effect of multiscale reinforcement by fiber surface treatment with polyvinyl alcohol/graphene oxide/oxidized carbon nanotubes on the mechanical properties of reinforced hybrid fiber composites. Composites Science and Technology 204 (2021).108634.
  2. Jonas H. M. Stiller, Kristina Roder, David Lopitz. Combining Pultrusion with carbonization: Process Analysis and materials properties of CFRP. Ceramics 2023, 6. 330-341.
  3. Dittrich B, Wartig K-A, Hofmann D, Mu¨lhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495.

El grafeno en la protección contra la radiación electromagnética

El grafeno en la protección

contra la radiación electromagnética

El desarrollo de la tecnología en comunicación junto con los dispositivos electrónicos ha generado una gran preocupación en relación con la radiación electromagnética emitida por estas tecnologías.

La radiación electromagnética es un tipo de campo electromagnético, es decir, una combinación de campos eléctricos y magnéticos oscilantes, que se propaga a través del espacio transportando energía de un lugar a otro. La radiación electromagnética puede manifestarse de diversas maneras, como ondas de radio, microondas, radiación infrarroja, luz visible, radiación ultravioleta, rayos X o rayos gamma y corresponden a diferentes longitudes de onda, que van del orden de kilómetros (ondas de radio) hasta el orden de picómetros (rayos gamma). El rango completo de longitudes de onda es lo que se denomina espectro electromagnético (Figura 1.).

Figura 1. Espectro Electromagnético.

Las radiaciones electromagnéticas pueden ser de alta frecuencia (radiaciones de telefonía móvil e inalámbrica, radiofrecuencias, ondas de TV, microondas, radares, señales de satélite, Wifi, Bluetooth) y de baja frecuencia (campos generados por cables o consumidores eléctricos).

El calor y la radiación electromagnética (radiación EM) son subproductos inevitables en los dispositivos electrónicos, especialmente los que funciona a altas frecuencias. A medida que los dispositivos electrónicos disminuyen de tamaño, estos funcionan a frecuencias cada vez más altas, generando incluso más calor y ondas electromagnéticas.

Las radiaciones electromagnéticas de alta frecuencias no solo degradan los dispositivos en sí mismos (produciendo calor), sino que también tienden a interferir con los aparatos electrónicos vecinos y lo más importante, es que tiene un efecto adverso sobre la salud humana ya que puede provocar muchas enfermedades, como leucemia, abortos espontáneos y cáncer cerebral.

Por lo que, el bloqueo o protección (blindaje) contra la radiación electromagnética podría ser una de las soluciones para minimizar riesgos a la salud y para la protección de equipos y/o aparatos electrónicos. Los metales son materiales de bloqueo electromagnético naturales, capaces de reflejar las ondas electromagnéticas debido a sus electrones libres, lo que explica su alta conductividad eléctrica y su escasa profundidad de penetración. Sin embargo, su elevado peso, el costo y la susceptibilidad de los metales a la corrosión, hacen que su uso sea limitado si no que imposible.

El uso de recubrimientos o pinturas conductoras para el bloqueo de radiación electromagnética es la opción más viable para dar solución a la problemática. Actualmente el grafeno es el aditivo nanotecnológico más revolucionario en la industria de recubrimientos. Debido a que el grafeno posee extraordinarias propiedades, las cuales incluyen alta conductividad eléctrica, elevada conductividad térmica y resistencia mecánica. Además, posee otras propiedades distintivas, incluida, la impermeabilidad a los gases, resistencia química, potencial antibacteriano y gran área superficial.

La capacidad de conducción eléctrica y la conductividad térmica del grafeno, puede ser aprovechada en la formulación de recubrimientos de blindaje contra la radiación EM, ya que el grafeno forma una red continua a lo largo de la superficie del recubrimiento, creando películas homogéneas que bloquean la radiación electromagnética mientras disipa el exceso de calor.

En estudios recientes, se ha reportado que la incorporación de nanoestructuras a base de carbono, como es el grafeno en recubrimientos o pinturas, permite el desarrollo de recubrimientos con alta conductividad eléctrica para el blindaje o protección contra las interferencias de electromagnéticas (EMI). La forma de actuar respecto a las ondas electromagnéticas de alta frecuencia es por refracción. Las ondas electromagnéticas rebotarán (reflexión) sobre la superficie tratada similar al efecto de un espejo respecto a la luz (Ver Fig. 2). El efecto-barrera en la propagación podría atribuirse a la contribución proveniente de la capacidad de reflexión, la absorción y múltiples reflexiones internas. La eficiencia de blindaje incrementa con la adición de mayor concentración de grafeno en la matriz polimérica del recubrimiento. Estos recubrimientos con grafeno pueden llegar a bloquear más del 99.98 % de la radiación electromagnética de alta frecuencia.

Figura 2. Porcentaje de Reflexión, absorción y transmisión de epóxico pristine (a) y epóxico con grafeno (b).
Tomado de Adv. Electron. Mater. 2019, 5. 1800558

Estos recubrimientos contra la radiación electromagnético pueden actuar tanto para la alta frecuencia como para baja frecuencia, con una excelente calidad de atenuación (disminución de intensidad de señales u ondas eléctricas) de hasta 38 dB, con una mano, y de 47 dB si se aplican dos manos.

Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea Graphenergy, está en constante investigación y desarrollo de nuevos recubrimientos multifuncionales y actualmente tiene a la venta una amplia gama de recubrimientos nanotecnológicos con grafeno.

Actualmente se están desarrollando y evaluando recubrimientos de blindaje contra la radiación electromagnética. Recubrimientos con alta conductividad eléctrica, para reducir los campos eléctricos de alta y baja frecuencia respectivamente. Estos recubrimientos, ofrecerán también protección anticorrosiva y antimicrobiana. Además, de brindar alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y una extraordinaria adherencia.

Referencias

  1. Suneel Kumar Srivastava, Kunal Manna, Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: a review, Journal of Materials Chemistry A, 10.1039/D1TA09522F, 10, 14, (7431-7496), (2022).
  2. Kargar, F., Barani, Z., Balinskiy, M., Magana, A. S., Lewis, J. S., Balandin, A. A., Adv. Electron. Mater. 2019, 5, 1800558.
  3. Seul Ki Hong et al 2012 Nanotechnology 23 455704.
  4. Lekshmi Omana, Anoop Chandran*, Reenu Elizabeth John, Runcy Wilson. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. Omega 2022, 7, 30, 25921–25947

Mejora la seguridad con compuestos poliméricos retardantes a la llama con óxido de grafeno

Mejora la seguridad con compuestos poliméricos

retardantes a la llama con óxido de grafeno

Los compuestos poliméricos (plásticos de ingeniería) son utilizados ampliamente en la industria automotriz, la construcción, la industria alimenticia, la aeroespacial y otros sectores. Su uso esta basado en la relación peso/resistencia, estabilidad física, resistencia química y resistencia a la corrosión.

Sin embargo, la mayoría de los polímeros, debido a su naturaleza, son inflamables y combustibles. Es decir, son materiales que se incendian rápidamente cuando son expuestos al fuego, sufriendo degradación y liberación calor para posteriormente iniciar la propagación de las llamas. Durante la combustión de los polímeros, liberan humo (hollín) y gases tóxicos que son un peligro para la seguridad de la vida humana y los bienes materiales.


Durante la combustión de materiales poliméricos intervienen cuatro componentes clave: calor, oxígeno, combustible y reacción de radiales libres. La retardancia a la flama de los materiales compuestos poliméricos puede conseguirse inhibiendo o perturbando uno o varios de estos componentes.


En los últimos años, se han realizado múltiples investigaciones para desarrollar aditivos que ayuden a inhibir o reducir la inflamabilidad de los polímeros, estos aditivos son conocidos como retardantes a la flama.

Los retardantes a la flama convencionales pueden clasificarse en dos principales categorías, en función de sus componentes: retardantes de flama inorgánicos y retardante de flama orgánicos. Los primeros incluyen hidróxido, óxido metálico, fosfato, silicato entre otros. Tiene excelente estabilidad térmica, no son tóxicos, son de bajo costo y no producen contaminación. Sin embargo, los retardantes de flama inorgánicos están limitados por elevada carga, baja compatibilidad y agregación. Por otro lado, los retardantes de flama orgánicos incluyen retardantes de flama que contienen halógenos, fósforo, fósforo-nitrógeno, etc. Estos últimos presentan alta eficacia y buena compatibilidad con los polímeros. Su principal desventaja es que tienen restricción porque pueden liberar gases tóxicos y ser nocivos durante la combustión, poniendo en peligro la salud de las personas y el medio ambiente.

Actualmente el óxido de grafeno (GO), es el nanomaterial más novedoso para su uso como retardante de flama, debido a que exhibe alta eficacia como retardante con bajas cargas y no es tóxico. Su eficiencia está asociado que el óxido de grafeno tiene un fuerte efecto barrera, alta estabilidad térmica y gran capacidad de absorción superficial que son favorables para reducir eficazmente la transferencia de calor y masa.

Los retardantes de flama a base de grafeno pueden mejorar la resistencia a la flama de los polímeros mediante la inhibición de los dos términos clave: calor y combustible. Más concretamente, el óxido de grafeno puede funcionar como retardante de flama de diferentes formas sinérgicas.

  1. En primer lugar, el GO posee una estructura de capas bidimensional única y puede promover la formación de una densa capa continua de carbón durante el proceso de combustión. El carbón puede actuar como barrera física para impedir la transferencia de calor desde la fuente de calor y retrasar el escape de productos (pirolisis) del sustrato polimérico.
  2. En segundo lugar, el GO tienen una gran área superficial específica y puede adsorber eficazmente compuestos orgánicos volátiles inflamables o dificultar su liberación y difusión durante la combustión.
  3. En tercer lugar, el GO contienen abundantes grupos reactivos que contienen oxígeno (grupo carboxilo en los bordes, así como grupos epoxi e hidroxilo en los planos basales en las láminas). Por ejemplo, los grupos que contienen oxígeno pueden sufrir descomposición y deshidratación a baja temperatura, absorbiendo así calor y enfriando el sustrato polimérico durante la combustión. Mientras tanto, los gases generados por deshidratación pueden diluir la concentración de oxígeno alrededor de la periferia de ignición, disminuyendo el riesgo de propagación de fuego.
  4. También puede modificar el comportamiento reológico del polímero e impedir su goteo, dificultando así la liberación y difusión de productos volátiles de descomposición a través del ”efecto laberinto” y afectando a la retardancia a la flama de los compuestos (por ejemplo, modificando la clasificación UL-94, el índice de oxígeno (OI) y el tiempo de ignición (TTI).

En estudios realizados, se ha encontrado que la incorporación de óxido de grafeno funcionalizado (5 % en peso) en Polipropileno (PP), incremento el módulo de Young y el límite elástico del PP en un 53 % y un 11 %, respectivamente. Mientras que en los resultados de la prueba de flamabilidad (UL-94), indica que la presencia de GO produce un cambio en el comportamiento de la masa fundida y evita que el material gotee.

Por otro lado, se han reportado la preparación de compuestos poliméricos en mezclado en fundido (extrusión), de Poliestireno/GO, donde se encontró que el GO (5 %) puede promover la carbonización en la superficie del polímero (capa de material carbonizado) y en el interior la presencia de un carga o relleno que presenta alta resistencia al calor y contribuye a la formación de residuos de carbón, mejorando la resistencia a la flama de los compuestos a base de poliestireno.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con óxido de grafeno, basados en varios polímeros, como PP, HDPE, LDPE, PET y PA6.

La incorporación de grafeno y derivados de grafeno (GO) a matrices poliméricas, ha permitido el desarrollo de compuestos poliméricos con mejores propiedades mecánicas, con mayor estabilidad térmica, capacidad de barrera contra gases y reducir la flamabilidad de los compuestos poliméricos.


Referencias

  1. Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214.
  2. Hofmann D, Wartig K-A, Thomann R, Dittrich B, Schartel B, Mu¨lhaupt R. Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene. Macromol Mater Eng 298:1322.
  3. Dittrich B, Wartig K-A, Hofmann D, Mu¨lhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495.

Innovación en la industria plástica: cómo los masterbatches de grafeno están cambiando el juego

Innovación en la industria plástica:

cómo los masterbatches de grafeno están cambiando el juego


El grafeno posee extraordinarias propiedades eléctricas, ópticas, térmicas y una elevada resistencia mecánica. Las propiedades del grafeno son atribuidas a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono.


Hoy en día, el grafeno es el aditivo nanotecnológico más prometedor en la industria del plástico.  La incorporación de grafeno y sus derivados (oxido de grafeno, GO) en diferentes matrices poliméricas (masterbatches), poseen un gran potencial para una amplia gama de aplicaciones. El masterbatch con grafeno, puede actuar como refuerzo mecánico o aditivo conductor tanto para materiales termoplásticos como termoestables. Pueden utilizarse en el sector automotriz, aeroespacial, electrónica o embalaje.


Los compuestos poliméricos a base de grafeno han mostrado mejoras significativas en propiedades como el módulo elástico, resistencia a la tensión, resistencia al impacto, conductividad eléctrica, resistencia a la radiación UV, estabilidad térmica, propiedad antimicrobiana, impermeabilidad o efecto barrera (no permite la difusión de humedad u otras moléculas).


Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con grafeno, basados en varios polímeros, como PP, HDPE, LDPE, PET y PA6.


Nuestros Masterbatches son materiales granulados que actúan como aditivos multifuncionales. La incorporación de grafeno en diferentes matrices poliméricas ha mostrado efectos importantes sobre las propiedades y condiciones de procesamiento de los plásticos, entre las que destacan:


  • Incremento en la resistencia a la tensión, deformación e impacto
  • Incremento en la resistencia a rayos ultravioleta
  • Excelente dispersión
  • Mejora las condiciones de procesamiento (estabilidad térmica)
  • Actúa como agente nucleante (modificación de la temperatura de cristalización del polímero)


En este sentido, se ha encontrado que la incorporación de grafeno y sus derivados, asi como la concentración, puede modificar las propiedades fisicomecánicas del polímero a procesar.  La adición de masterbatch a diferentes polímeros, ha mejorado en menor o mayor proporción las características finales del material, por ejemplo:


  • Aditivación de Polipropileno (PP) con masterbatch de polipropileno -grafeno (MB-PP/GO), aumenta la resistencia a la tensión (8 %) y porcentaje de ruptura (29 %).
  • Aditivación de Polietileno (PE) con masterbatch de polietileno -grafeno (MB-PE/GO), mejora la resistencia a la tensión (17 %), resistencia a la flexión y resistencia a la ruptura (66%).
  • Aditivación de Polietilen tereftalato (PET) con masterbatch de Polietilen tereftalato -grafeno (MB-PET/GO), mejora la resistencia a la humedad, incrementa la resistencia a la tensión (72.2 %) y mejora la resistencia al impacto.
  • Aditivación de Policarbonato (PC) con masterbatch de policarbonato -grafeno (MB-PC/GO), mejora la resistencia a la humedad y mejora la resistencia a la ruptura (276 %).


Por otro lado, los masterbatches con grafeno también pueden ser incorporados a polímeros reciclados. En la actualidad, la reutilización y el reciclado de materiales plásticos son de vital importancia en el camino de transición hacia una economía circular. En este aspecto, el constante lavado, peletizado y reprocesamiento pueden producir la pérdida de propiedades fisicomecánicas de los plásticos reciclados, por lo que, al añadir grafeno, se puede restaurar o mejorar dichas propiedades. En aplicaciones agrícolas, se puede producir películas para acolchados con mayor resistencia a la radiación ultravioleta.


Referencias

  • Fang, M., et al., Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry. 19(38): p. 7098-7105.
  • Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules. 43(16): p. 6515-6530.
  • Balandin, A.A., et al., Superior Thermal Conductivity of Sin gle-Layer Graphene. Nano Letters, 8(3): p. 902-907.
  • Nabira Fatima, Umair Yaqub Qazi, Asim Mansha., Recent developments for antimicrobial applications of graphene-based polymeric composites: A review, https://doi.org/10.1016/j.jiec.2021.04.050

Innovación en la protección contra la corrosión: la tecnología de óxido de grafeno

Innovación en la protección contra la corrosión:

la tecnología de óxido de grafeno

La corrosión es el mayor de los desafíos a la que deben de enfrentarse muchas industrias en el mundo. En la actualidad, existen en el mercado una gran diversidad de recubrimientos para la protección contra la corrosión. Sin embargo, la mayoría de estos recubrimientos aun no cuenta con las características fisicoquímicas necesarias para un buen desempeño, estos recubrimientos no son barreras perfectas y eventualmente fallan, su resistencia química depende de su capacidad de impermeabilidad de sustancias químicas, y con ello también depende su capacidad de adherencia y su resistencia a la abrasión.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, tiene a la venta una amplia gama de recubrimientos a través de su línea Graphenergy.

Graphenergy es la línea de recubrimientos nanotecnológicos con óxido de grafeno, que cuenta con un portafolio completo de recubrimientos anticorrosivos de alto desempeño para mantenimiento Industrial e Infraestructura.

Teniendo en cuenta que la infraestructura o equipo industrial pueden estar expuestos a ambientes con diferentes grados de corrosión (intermedia o extrema), se recomienda el uso de Sistemas de Recubrimientos para protección a la corrosión, Graphenergy ofrece las siguientes alternativas:

1. SISTEMA ALQUIDÁLICO

Recomendado para ambientes de corrosión intermedio o suaves (condiciones de corrosión o agresividad intermedia). Este sistema posee resistencia la intemperie y brinda protección anticorrosiva.

Este sistema, está formado por un primer y esmalte tipo alquidal, ideal para la protección de superficies metálicas e infraestructura industrial, tanto para interiores como exteriores. Proporciona alta protección anticorrosiva, resistencia a los rayos UV y brinda extraordinaria adherencia al sustrato. Se recomienda para zonas no costeras o que las condiciones de humedad no sean altos.

2. SISTEMA EPOXI-POLIURETANO

Diseñado para ambientes severos o críticos, en los cuales la infraestructura o equipos y/o algún otro elemento protegido estén expuestos a rayos UV y a una atmosfera industrial con alta contaminación (vapores altamente corrosivos).

Este sistema, está formado por un primer epóxico y Poliuretano (acabado). Recubrimientos diseñados para la protección de superficies metálicas expuestas a ambientes altamente corrosivos y químicos. Ambos recubrimientos ofrecen, alta adherencia, extraordinaria resistencia química, alta resistencia al desgaste, resistencia a los rayos UV, e impermeabilidad, con la finalidad de mejorar la vida de útil de cualquier superficie metálica o instalación y reducir los costos de mantenimiento.

Los sistemas de recubrimientos anticorrosivos Graphenergy, poseen grandes beneficios, que incluyen:

  • Mayor rendimiento al de las tecnologías de recubrimientos existentes en el mercado actual.
  • Se requieren menos capas de recubrimiento aplicadas y con mayor protección anticorrosiva.
  • Recubrimientos con mayor adherencia al sustrato.
  • Recubrimientos con mayor resistencia química y elevada resistencia térmica.
  • Recubrimientos con mayor impermeabilidad y efecto antiadherente.


Cuando se selecciona un sistema de recubrimiento debe tenerse en cuenta la influencia del ambiente a la que será expuesto y el aspecto final que se busca y algunas otras consideraciones que el sistema debe desempeñar y a su mantenimiento.


Por otro lado, otro factor decisivo que determina la selección del primer anticorrosivo a utilizar y en consecuencia el sistema de recubrimiento es el estado físico superficial de la superficie metálica a recubrir y/o el tratamiento o preparación de superficie que se le puede dar.


Referencias

  1. Fengjuan Xiao, Chen Qian, et al., et al., Progress in Organic Coatings, 125, 79-88 (2018); doi.org/10.1016/j.porgcoat.2018.08.027
  2. Karolina Ollik and Marek Lieder. Review of the application of graphene-based coatings as anticorrosion layers. Coatings 2020, 10(9), 883. 2020.
  3. Zhang J., Kong, G., Li S., Le Y., Che C., Zhang S., Lai D., Liao X. Graphene-reinforced epoxy powder coating to achieve high performance wear and corrosion resistance. 20:1448-4160, 2020.

El óxido de grafeno: el nuevo aliado de los recubrimientos primarios en la protección contra la corrosión

El óxido de grafeno:

el nuevo aliado de los recubrimientos primarios en la protección contra la corrosión

La corrosión es una reacción electroquímica que se produce cuando el metal reacciona con el medio ambiente circundante formando óxido férrico, haciéndole perder al metal sus principales características de dureza y resistencia. El oxígeno, la temperatura, la humedad, los contaminantes, gases y las características fisicoquímicas del agua son los factores principales que afectan la velocidad con la que se corroen los metales.

Uno de los métodos más ampliamente utilizados para controlar la corrosión, es la aplicación de recubrimientos protectores (primarios) a las superficies metálicas. El recubrimiento forma una barrera entre el sustrato (metal) y el medio que lo rodea, retardando el deterioro u oxidación del metal. Los recubrimientos son de sustancias a base de polímeros (pinturas), resistentes a la degradación, que se emplean para recubrir el material por proteger.

Hoy en día, se han desarrollado una amplia variedad de primers o primarios a base de diferentes tipos de resina, como son, el tipo alquidal y epóxico. La eficiencia va asociado generalmente a un aumento de costo. Desafortunadamente, la mayoría de estos recubrimientos o pinturas, no son barreras perfectas y eventualmente fallan, debido a agujeros o microporos existentes en el recubrimiento o la difusión de oxígeno y agua a través de este (no son completamente impermeables). Por otro parte, los recubrimientos siguen teniendo baja resistencia térmica y sobre todo una limitada resistencia química.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea Graphenergy, ha lanzado una gama de primers y otros recubrimientos nanotecnológicos.

Los primarios anticorrosivos Graphenergy, son recubrimientos a base de óxido de grafeno (GO), un nuevo aditivo nanotecnológico que aporta múltiples propiedades a los recubrimientos, entre la que destacan, la extraordinaria protección a la corrosión y tecnología de barrera (efecto-barrera). El óxido de grafeno crea vías que son muy tortuosas, lo que evita la difusión de oxígeno y moléculas de agua a través del recubrimiento y finalmente no lleguen a la superficie metálica, brindando la protección contra la corrosión (Fig. 1). Estos primarios pueden actuar como se ha mencionado, mediante, (1) la formación de una barrera, que impide en gran medida la penetración de oxígeno y moléculas de agua, o (2) la inhibición del proceso de corrosión, al incrementar la resistividad eléctrica como la iónica, cortando el ciclo de corrosión.

Fig. 1 Mecanismo de protección anticorrosiva de recubrimientos a base de polímeros y grafeno.

Entre los primarios anticorrosivos que actualmente se encuentran en venta, por parte de Graphenergy, se encuentran dos: el primer alquidal y el primer epóxico, cada uno diseñado de acuerdo con diferentes necesidades y condiciones.

A. Primer alquidal anticorrosivo Graphenergy.

Proporciona alta protección anticorrosiva, resistencia a los rayos UV y brinda extraordinaria adherencia al sustrato. Ideal para la protección de infraestructura industrial, para la aplicación de superficies ferrosas, tanto para interiores como exteriores. Se recomienda para zonas no costeras o que las condiciones de humedad no sean altos.

B. Primer epóxico anticorrosivo Graphenergy.

Recubrimiento diseñado para la protección de superficies metálicas expuestas a ambientes altamente corrosivos y químicos. Este recubrimiento produce una barrera perfecta (extraordinaria adherencia al sustrato y espesor adecuado), por lo que ni el oxígeno ni el agua u otro producto químico van a poder alcanzar la superficie del metal y proveerá elevada protección a la corrosión.

Además, este recubrimiento ofrece extraordinaria resistencia química, con alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y mayor adherencia, con la finalidad de mejorar la vida de útil de cualquier superficie metálica o instalación y reducir los costos de mantenimiento.

Los recubrimientos de grafeno brindan propiedades mejoradas y muchos más beneficios, que incluyen:

  • Mayor rendimiento al de las tecnologías de recubrimientos existentes en el mercado actual.
  • Se requieren menos capas de recubrimiento aplicadas y con mayor protección anticorrosiva.
  • Reducción de Zinc en las formulaciones, puede disminuir la cantidad hasta en un 50%.
  • Primarios con mayor resistencia química y elevada resistencia térmica.
  • Recubrimientos con mayor impermeabilidad y efecto antiadherente (no se le adhiere suciedad). El óxido de grafeno crea una red bidimensional en la superficie del recubrimiento, lo que no permite el anclaje o difusión de moléculas de agua o sustancias químicas, lo que permite desarrollar recubrimientos con efecto hidrofóbico, dando como resultado recubrimientos con mayor facilidad de limpieza (Ver Fig. 2).
Fig. 2. Comportamiento de recubrimientos sin y con óxido de grafeno, después de someterlos a un ataque químico (solución corrosiva) por más de dos horas.
  • Mejora la adherencia al sustrato. Los primarios con óxido de grafeno incrementan su adherencia hasta en un 50% con respecto al control (Fig. 3).
Fig. 3. Prueba de adherencia de primario sin y con óxido de grafeno.
  • Recubrimientos más flexibles. La incorporación de óxido de grafeno no solo mejora la adherencia, también permite brindar flexibilidad al recubrimiento, permitiendo que tenga alta resistencia a la flexión o mayor resistencia a la fractura (Fig. 4).
Fig.4. Prueba de Flexibilidad en primario sin y con óxido de grafeno.


Referencias

  1. Chang, C.-H. et al. Novel Anticorrosion Coatings Prepared from Polyaniline/Graphene Composites. Carbon N. Y. 50, 5044–5051 (2012).
  2. Fengjuan Xiao, Chen Qian, et al., et al., Progress in Organic Coatings, 125, 79-88 (2018); doi.org/10.1016/j.porgcoat.2018.08.027
  3. Karolina Ollik and Marek Lieder. Review of the application of graphene-based coatings as anticorrosion layers. Coatings 2020, 10(9), 883. 2020.
  4. Zhang J., Kong, G., Li S., Le Y., Che C., Zhang S., Lai D., Liao X. Graphene-reinforced epoxy powder coating to achieve high performance wear and corrosion resistance. 20:1448-4160, 2020.
  5. Ghosh Tuhin and Karak Niranjan. Mechanically robust hydrophobic interpenetrating polymer network-based nanocomposites of hyperbranched polyurethane and polystyrene as an effective anticorrosive coating. New J. Chem., 2020, 44, 5980-5994.

Nanotecnología y protección contra la corrosión: la era del óxido de grafeno

Nanotecnología y protección contra la corrosión:

la era del óxido de grafeno

La corrosión se define como el deterioro gradual de los materiales metálicos y sus propiedades, y se produce cuando el metal reacciona con el medio ambiente circundante formando óxido u otro compuesto químico.  En general, el aire atmosférico, la humedad, la lluvia, y las soluciones acuosas (productos químicos) son los ambientes que con mayor frecuencia se asocian a los problemas de corrosión.

En la actualidad, el daño por corrosión es una de las problemáticas más importantes a afrontar para muchas industrias en el mundo. Se estima, que la corrosión provoca pérdidas económicas del 3.4 % del PIB mundial (alrededor de 2.5 billones de dólares anuales). Sin embargo, existen tres industrias que cuyo impacto de corrosión es más frecuente y riesgoso para sus procesos: la industria química, industrial naval y la industria de la construcción.

En la industria química, el uso de productos químicos es primordial dentro de sus operaciones, por lo que los equipos y maquinaria están en contacto directo y constante con sustancias químicas, incrementando costos de mantenimiento y/o reparación, afectando el presupuesto de la industria y su producción. En el caso de la industria naval, la humedad y la sal, son el principal factor que contribuye al proceso de la corrosión y, por consiguiente, el deterioro y afectación de sus instalaciones, barcos, contenedores y hasta mercancías. Por otro lado, en la industria de la construcción, tanto la maquinaria y las mismas áreas de construcción pueden verse afectadas por la corrosión debido a su exposición al medio ambiente. La corrosión provoca que se debiliten los activos metálicos generando fallas mecánicas, poniendo en riesgo la obra.

Regularmente los recubrimientos anticorrosivos se usan para la protección contra la corrosión, humedad y ensuciamiento de instalaciones, maquinaria y equipos.  A nivel comercial, existe una amplia variedad de recubrimientos anticorrosivos a base de diferentes aditivos y resinas, su eficiencia está asociado generalmente a un aumento en el costo. Sin embargo, los recubrimientos siguen teniendo baja resistencia térmica y a la corrosión y sobre todo una limitada resistencia química.

Actualmente el grafeno es el aditivo nanotecnológico más revolucionario en la industria de recubrimientos y pinturas. La incorporación de grafeno como aditivo en recubrimientos, produce recubrimientos con extraordinaria protección contra la corrosión. El grafeno crea vías que son muy tortuosas, lo que evita que las moléculas de agua y oxígeno y/o agentes químicos se difundan a la superficie de los materiales con base metálica, lo que da como resultado la protección del metal contra la oxidación y la corrosión (Fig. 1).

Figura 1. Representación esquemática del camino tortuoso para moléculas de oxígeno y agua en recubrimientos poliméricos con arcilla y grafeno.

Los recubrimientos de grafeno brindan muchos beneficios anticorrosivos y de rendimiento, que incluyen:

  • Mayor rendimiento al de las tecnologías de recubrimientos existentes en el mercado actual.
  • Se requieren menos capas de recubrimiento aplicadas para obtener mayores beneficios
  • Reducción de Zinc en las formulaciones
  • Resistencia química


Los recubrimientos anticorrosivos mejorados con grafeno y óxido de grafeno reemplazaran los recubrimientos tradicionales a base de zinc, que tienen varios inconvenientes, como una vida corta, alto contenido de compuestos orgánicos volátiles (COV), curado lento, alto costo, sedimentación en el almacenamiento.


Actualmente Energeia – Graphenemex®, empresa mexicana líder en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea Graphenergy, ha lanzado una amplia gama de recubrimientos nanotecnológicos con grafeno. Estos recubrimientos ofrecen alta protección anticorrosiva, extraordinaria resistencia química, con alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y con mayor adherencia, con la finalidad de mejorar la vida de útil de cualquier superficie o instalación y reducir los costos de mantenimiento.


Referencias

  1. Chang, C.-H. et al. Novel Anticorrosion Coatings Prepared from Polyaniline/Graphene Composites. Carbon N. Y. 50, 5044–5051 (2012).
  2. Fengjuan Xiao, Chen Qian, et al., et al., Progress in Organic Coatings, 125, 79-88 (2018); doi.org/10.1016/j.porgcoat.2018.08.027
  3. Chaudhry, A. U., Mittal, V. & Mishra, B. Inhibition and Promotion of Electrochemical Reactions by Graphene in Organic Coatings. RSC Adv. 5, 80365–80368 (2015).
  4. Zhen, Z. & Zhu, H. Graphene: Fabrication, Characterizations, Properties and Applications. Graphene (Academic Press, 2018).

Óxido de grafeno: una alternativa prometedora en la nanotecnología

OXIDO DE GRAFENO:

una alternativa prometedora en la nanotecnología

Desde que el grafeno fue aislado por primera vez en 2004 por el grupo de Manchester, este nanomaterial ha mostrado ser el más revolucionario para el desarrollo de nuevas aplicaciones a nivel industrial.

El grafeno posee extraordinarias propiedades eléctricas, ópticas, térmicas y una elevada resistencia mecánica. Las propiedades del grafeno son atribuidas a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono.

En la actualidad existen diferentes métodos de producción de grafeno, estos se pueden clasificar en dos métodos, de acuerdo con su procedencia, el método “bottom-up” y el método “top down”. El método “bottom-Up”, consiste en la creación de estructuras de grafeno a través de bloques de construcción (átomos, moléculas), por ejemplo, mediante Deposición Química de Vapor (CVD); y el método de “top down”, involucra la producción del grafeno, a partir de la oxidación del grafito. El grafito está formado de láminas de grafeno que se encuentran apiladas unas con otras. En el siguiente diagrama, se representa el proceso de obtención del grafeno a partir de la oxidación del grafito.

Diagrama esquemático del proceso de obtención del GO, mediante la oxidación de grafito.

El proceso de oxidación del grafito, inicia con la adición de grafito en ácido sulfúrico (H2SO4), con agitación mecánica constante. Posteriormente, se añade lentamente permanganato de potasio (KMnO4), produciendo una reacción química que permite que el grafito (láminas de grafeno apiladas unas sobre otras) sea modificado químicamente en su estructura. Cuando el KMnO4 reacciona con el H2SO4, forma óxido de manganeso VII (Mn2O7), el cual es un agente oxidante muy selectivo sobre compuestos aromáticos doble enlace, como es el grafito. El agente oxidante ataca molecularmente la estructura de cada lámina de grafeno en el grafito, injertando grupos funcionales oxigenados (con oxigeno), como grupos epóxidos (C-O-C) e hidroxilos (-OH), sobre cada lámina, y grupos carboxilos (-COOH, CO2H) en las orillas de cada lámina, obteniendo óxido de grafito y óxido de grafeno (GO), ver Figura 1.

Figura 1. Estructura del óxido de grafeno

La incorporación de grupos funcionales oxigenados permite que un material como el grafito, altamente hidrofóbico (que repele el agua) y buen conductor eléctrico, pase hacer óxido de grafito y óxido de grafeno (GO), materiales altamente hidrofílicos, esto es se mezcan y dispersan facilmente con el agua (Ver Figura 2). El GO es químicamente similar al óxido de grafito, pero estructuralmente se diferencia por el arreglo y número láminas apiladas.

El GO se puede definir como una sola lámina de grafeno exfoliada o pila de pocas láminas (3-4) que esta funcionalizada con distintos grupos oxigenados. Entre sus principales características se encuentra que es hidrofílico, aislante e higroscópico (absorbe humedad). Por otra parte, las láminas de óxido de grafeno poseen una gran área superficial y exhiben alta resistencia mecánica y flexibilidad.

Aplicaciones

El óxido de grafeno ha atraído un gran interés en varios campos de la ciencia y la tecnología, debido a sus notables propiedades mecánicas, químicas, térmicas, entre otras. Por lo que numerosas investigaciones comenzaron, para aprovechar las propiedades del óxido de grafeno.

En el 2011, surgieron las primeras investigaciones del uso del GO como precursor en la producción a gran escala de grafeno, para uso como material de carga/refuerzo/ en matrices poliméricas, como el polietileno de alta densidad (HDPE) y el polietileno de baja densidad ( LDPE).

Para el 2014, el GO fue considerado factible para su uso como agente retardante a la flama. Actualmente aun siguen las investigaciones para funcionalizarlo con diferentes materiales poliméricos.

En el 2017, iniciaron los primeros reportes, de la fabricación de membranas a base de GO, ya que es impermeable a gases y líquidos, mostrando su capacidad para filtrar partículas pequeñas, moléculas orgánicas e incluso su uso para la desalinización del agua de mar.

En 2018, Energeia-Graphenemex inicio investigaciones sobre el óxido de grafeno como nuevo aditivo para la producción de recubrimientos anticorrosivos y antimicrobianos. Para el 2019, incrementaron estudios del óxido de grafeno en recubrimientos con comportamiento antibacteriano, asociado a que el GO, es capaz de penetrar la membrana celular de las bacterias produciendo estrés oxidativo e inhibiendo su reproducción.

En particular la funcionalización del GO, permite que sea aplicable en sistemas biológicos, desarrollo de biosensores para la identificación de moléculas específicas, sistemas de liberación de fármacos, entre otros.

Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial. Tiene amplia experiencia en la producción de óxido de grafeno (GO) a gran escala, con diferentes grados de oxidación y alta calidad para su uso en diferentes  aplicaciones e industrias. Actualemente, utiliza el óxido de grafeno en la producción de aditivos para concreto y recubrimientos anticorrosivos y antimicrobianos que se comercializan bajo la marca Graphenergy.

Referencias

  1. M. Fang, K. Wang, H. Lu, Y. Yang y S. Nutt, «Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites,» Journal of Materials Chemistry, vol. 19, pp. 7098-7105, 2009.
  2. B. Dittrich, K.-a. Wartig, R. Mülhaupt y B. Schartel, «Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene,» Polymers, vol. 6, pp. 2875-2895, 2014.
  3. Y.-j. Wan, L.-x. Gong, L.-c. Tang, L.-b. Wu y J.-x. Jiang, «Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide,» COMPOSITES PART A, vol. 64, pp. 79-89, 2014.
  4. J. Wang, C. Xu, H. Hu, L. Wan, R. Chen, H. Zheng, F. Liu, M. Zhang, X. Shang y X. Wang, «Synthesis , mechanical , and barrier properties of LDPE / Graphene nanocomposites using vinyl triethoxysilane as a coupling agent,» J. Nanopart Res, vol. 13, pp. 869-878, 2011.

El Grafeno, el material del futuro en la industria de recubrimientos y pinturas

GRAFENO EN LA INDUSTRIA

DE RECUBRIMIENTOS Y PINTURAS

Actualmente el grafeno es el aditivo nanotecnológico más revolucionario en la industria de recubrimientos y pinturas.

Regularmente los recubrimientos se usan con fines decorativos y para la protección de superficies, especialmente para la protección contra la corrosión, humedad, ensuciamiento, desgaste mecánico, entre otros.  A nivel comercial, existe una amplia variedad de recubrimientos a base de diferentes tipos de resinas y aditivos, su eficiencia está asociado generalmente a un aumento en el costo. Sin embargo, los recubrimientos siguen teniendo baja resistencia a la corrosión, a la abrasión y una limitada resistencia química y térmica.

Por lo que la industria de los recubrimientos, como muchas otras industrias, siguen en constante investigación y desarrollo de nuevas tecnologías, para la formulación y aplicación de nuevos y mejores recubrimientos.

Desde el año 2004, cuando fue aislado por primera vez el nanomaterial de grafeno, los científicos de la industria de recubrimientos han estado en la búsqueda de formas para utilizar el grafeno como aditivo, para con ello mejorar el desempeño y la tecnología de los recubrimientos en diferentes áreas de aplicación.

El grafeno tiene propiedades únicas, atribuidas principalmente a su estructura en forma de láminas bidimensionales (2D), formada por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono. Este nanomaterial posee extraordinarias propiedades, las cuales incluyen alta conductividad eléctrica y térmica, y elevada resistencia mecánica. Además, posee otras propiedades distintivas, incluida, la impermeabilidad a los gases, resistencia química, potencial antibacteriano y gran área superficial.

La composición a base de carbono del grafeno y su compatibilidad lo convierte en un aditivo viable para recubrimientos poliméricos orgánicos. 

Entre las ventajas que brinda el uso de grafeno, esta su capacidad de incorporar características nuevas o mejoradas en los recubrimientos. Se pueden desarrollar diferentes tipos de recubrimientos multifuncionales, como:


  • Recubrimientos anticorrosivos

Uno de los principales usos de los recubrimientos con grafeno es la protección contra la corrosión. El grafeno crea vías que son muy tortuosas, lo que evita que las moléculas de agua y oxígeno y/o agentes químicos se difundan a la superficie de los materiales con base metálica, lo que da como resultado la protección del metal contra la oxidación y la corrosión.


  • Recubrimientos ignífugos

Aditivos convencionales basados en halógenos (bromo y cloro), así como fósforo, compuestos de melamina e inorgánicos, son utilizados para mejorar la resistencia al fuego de los recubrimientos, sin embargo, estos materiales son tóxicos para los seres humanos y el medio ambiente. Por otra parte, el alto contenido de estos materiales ignífugos puede causar el deterioro de otras propiedades en los recubrimientos.

Por lo que, la aplicación de grafeno como nuevo aditivo en recubrimientos, puede reducir o eliminar el uso de aditivos convencionales ignífugos, además puede proveer al recubrimiento de un mejor desempeño frente a temperaturas extremas durante un tiempo más prolongado y con mejor estabilidad mecánica.


  • Recubrimientos resistentes al desgaste o abrasión

El grafeno ha demostrado ser un candidato potencial para recubrimientos resistentes al desgaste, abrasión y a rayones. El grafeno es el material más ligero y doscientas veces más resistentes que el acero, además el grafeno tiene una alta capacidad para soportar grandes diferencias de presión y una alta resistencia mecánica.


  • Recubrimientos antiincrustantes

El grafeno es un buen candidato para uso como agente antiadherente. Su aplicación, reduce el problema de ensuciamiento y la deposición de materiales orgánicos e inorgánicos en cascos de barcos, buques o embarcaciones marinas, plataformas petrolíferas, entre otros.  Este tipo de aplicación se atribuye principalmente a la propiedad hidrofóbica (repelente al agua) y propiedades de barrera del grafeno.


  • Recubrimientos antimicrobianos

Resulta innovador el uso de láminas de grafeno u óxido de grafeno como agente antimicrobiano, debido a que existen estudios que han demostrado una fuerte actividad antimicrobiana contra una amplia variedad de microorganismos, incluyendo bacterias Gram +,  Gram – y hongos. Asociado a que los materiales grafenicos son capaces de penetrar la membrana celular de los microorganismos produciendo estrés oxidativo en inhibiendo su reproducción.

A nivel mundial, continúa la investigación y desarrollo de recubrimientos a base de grafeno. Actualmente son varias las empresas e Instituciones que han realizado formulaciones mejoradas con grafeno para recubrimientos, entre las que destacan:


  • Applied Graphene Materials, con sede en el Reino Unido,en colaboración con la empresa estadounidense Sherwin-Williams, se encuentran en el desarrollo de pinturas anticorrosivas a base de grafeno. Su objetivo, es incorporar grafeno en diferentes formulaciones, especialmente en pintura marítima para uso en cascos de barcos para protegerlos de la corrosión.
  • The Sixth Element Materials, empresa china, que se centra en la investigación, desarrollo y venta de materiales grafenicos, ha lanzado un imprimante anticorrosivo base grafeno-zinc para torres de energía eólica marítimas.
  • Graphenstone, empresa española, ha desarrollado pintura ecológica que combina tecnología de grafeno y cal. Obteniendo pinturas con mayor resistencia, flexibilidad, calidad y un periodo de vida mas largo en comparación con pinturas base cal convencionales.

Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea Graphenergy, ha lanzado una amplia gama de recubrimientos nanotecnológicos con grafeno. Estos recubrimientos ofrecen alta protección anticorrosiva y antimicrobriana. Además, de brindar alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y una extraordinaria adherencia, con la finalidad de mejorar la vida de útil de cualquier superficie o instalación y reducir los costos de mantenimiento.

Los recubrimientos con grafeno, además de poseer protección anticorrosiva, pueden brindar mayor resistencia química, resistencia a los rayos UV, mayor rendimiento térmico en un amplio rango de temperaturas, además de recubrimientos más flexibles y resistentes al agrietamiento.

Referencias

  1. DuMée, L.F., et al., Carbon, 87, 395–408 (2015); doi:10.1016/j.carbon.2015.02.042.
  2. Wang, E.N., et al., Nano Lett., 15 (5), 2902–2909 (2015).
  3. J. Chen, H. Peng y X. Wang, Nanoscale, vol.6, pp. 1879-1889, 2014
  4. Md J. Nine, Martin A. Cole, Diana N.H. Tran, and Dusan Losic, J. Mat. Chem. A, 2015.
  5. Sachin Sharma Ashok Kumar, Shahid Bashir, K. Ramesh, S. Ramesh, Progress in Organic Coatings, 154, (2021)