Optimización de Compuestos de Fibra de Vidrio y de Carbono:
Mejorando Propiedades con Nanopartículas de Grafeno
Las fibras de vidrio y de carbono gracias a sus excelentes propiedades son ampliamente utilizados en industrias como la aeroespacial, marítima, automotriz, deportiva, construcción e incluso para la fabricación de componentes fundamentales de energías renovables como la eólica. Sin embargo, pese a su excelente desempeño, son compuestos que suelen presentar un fenómeno conocido como “delaminación interlaminar” derivada de una débil interacción interfacial fibra/resina que puede comprometer la vida útil y seguridad del producto debido a su importante participación en la transferencia de tensión entre ambos elementos. Al ser esta interacción clave para el éxito a largo plazo de las estructuras compuestas, se han explorado diversas alternativas de mejora como la fijación en Z, cosido y trenzado; aumento del área superficial y la reactividad de las fibras por medio de modificaciones superficiales como el tratamiento con plasma, modificación térmica o funcionalización química que, evidentemente son procesos complejos, costosos y no siempre eficientes que, además, tienden a reducir el rendimiento del laminado en el plano.
“Como estrategia adicional y de relativamente reciente aparición, se propuso la incorporación de nanopartículas al material compuesto por fibras buscando favorecer la interacción con la matriz en la que se embeben”.
El Grafeno, el nanomaterial conocido como la piedra angular de la familia del carbono y que desde su aislamiento ha resaltado calificativos como “el material del futuro” o “el material milagro”, es un atractivo candidato como nano refuerzo de incontables compuestos poliméricos gracias a su estructura plana grafitizada única, que da lugar a mejores propiedades mecánicas, térmicas, entre otras que, a diferencia de otras nanopartículas como los nanotubos de carbono (CNT, por sus siglas en inglés), no suele aumentar de manera relevante la viscosidad de las resinas y por lo tanto, permite incorporar concentraciones más altas favoreciendo la tan mencionada interacción fibra/matriz.
Las investigaciones sobre los efectos del grafeno para el diseño de materiales híbridos a base de fibras (vidrio/carbono) embebidas en una matriz polimérica comúnmente de naturaleza epóxica, han destacado mayor rigidez de los compuestos, mejoras en resistencia a la fractura, mejor lubricación e incluso mejor conductividad eléctrica. Esto se debe a que su gran superficie de área permite una transmisión de carga efectiva desde la matriz blanda del polímero a las láminas de grafeno que son relativamente más rígidas, lo cual es un requisito esencial para mejorar el rendimiento mecánico, ratificado por una mayor resistencia al corte interlaminar del material, mayor resistencia a la tracción y al impacto. Además, durante la manipulación y corte de las estructuras híbridas de fibra, la presencia del grafeno contribuye a generar menos calor durante el fresado, conduce a temperaturas de corte más bajas y menor rugosidad en la superficie; asimismo, otro de los beneficios es que el grafeno produce mayor efecto endurecedor y mejor resistencia a la flexión del material expuesto a distintas temperaturas con registros desde los 40 °C hasta los 200 °C.
En Energeia- Grapenemex la empresa líder en América latina en la producción de materiales grafénicos y en el desarrollo de aplicaciones, estamos convencidos de que las extraordinarias capacidades del grafeno como nanorefuerzo de incontables matrices tridimensionales continuarán alentando a investigadores y colegas industriales a explorar sus beneficios para la fabricación de componentes estructurales más resistentes y ligeros de aeronaves como fuselaje y alas; autopartes y carrocerías aerodinámicas de automóviles; aerogeneradores, equipos deportivos, materiales de construcción, entre otros.
La imagen inferior evidencia la buena interacción fibra/matriz promovida por la presencia del grafeno 5.
Redacción: EF/DH
Referencias:
Effect of dispersion of alumina nanoparticles and graphene nanoplatelets on microstructural and mechanical characteristics of hybrid carbon/glass fibers reinforced polymer composite. Journal of material research and technology. 2021, 14, 2624;
Experimental investigation on the properties of glass fiber-reinforced polymer composites containing Graphene. AIP Conf. Proc. 2022, 2405, 050009;
Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content. Composites part A: Applied science and manufacturing. 2017, 95, 40;
Preparation and Mechanical Properties of Graphene/Carbon Fiber-Reinforced Hierarchical Polymer Composites. J. compos sci. 2019, 3, 30;
Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 139, 012004;
Effect of Graphene on Machinability of Glass Fiber Reinforced Polymer (GFRP). J. Manuf. Mater. Process. 2019, 3, 78;
Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J Mater Sci. 2016, 51, 3337.
mejorando recubrimientos con nanotecnología para incrementar su resistencia a la intemperie
Los recubrimientos están diseñados con fines decorativos y para la protección de superficies, especialmente para la protección contra la corrosión y humedad. En un sistema de recubrimientos (multicapa), la capa superior o de acabado, desempeña un papel crucial, ya que debe proporcionar un buen aspecto y proteger las capas interiores y el sustrato contra factores ambientales como la luz solar, la humedad, corrosión y resistencia a productos químicos, ensuciamiento, etc. durante su vida útil.
Hoy en día, el Poliuretano (PU) se considera uno de los recubrimientos como mejores características físicas-químicas para aplicaciones de recubrimiento de acabado y por su resistencia a la intemperie. Sin embargo, su resistencia a la intemperie va disminuyendo con la exposición a la luz ultravioleta durante largos periodos de tiempo.
La luz solar es una de las principales causas de daño a recubrimientos. Los daños van desde la perdida de propiedades físicas, desintegración en polvo (caleo), resquebrajamiento, descascarillado, decoloración y cambio de color, como resultado de la fotodegradación química, migración, evaporación e interacción de otros componentes con el recubrimiento.
En los últimos años, se han implementado diversos materiales nanoestructurados, como el titanio, el óxido de zinc, cerio y el óxido de hierro, para mejorar la resistencia a la intemperie de los recubrimientos poliméricos. El mecanismo se basa en su efecto de proyección (tanto de absorción como de dispersión) de los rayos incidentes en la región UV. Estos materiales pueden estabilizar los recubrimientos frente a la exposición exterior, poseen una actividad fotocatalítica que pueden destruir el material aglutinante orgánico presente en los recubrimientos, lo que lleva a modificar la superficie de estos materiales nanoestructurados para eliminar o inhibir su actividad fotocatalítica, lo que requiere más procesos, tiempo y dinero.
Recientemente el grafeno ha atraído mucha atención, como nuevo aditivo y material para la producción de recubrimientos para la mejora de propiedades anticorrosivas, antimicrobianas y con mayor resistencia a la intemperie, debido a su estructura electrónica especial que le brinda propiedades eléctricas, mecánicas y químicas únicas. El grafeno, es un nanomaterial que está formado por una o varias capas de carbono (formadas por átomos de carbono enlazados de manera hexagonal y un espesor de un átomo de carbono). Esta estructura hace que los materiales basados en grafeno sean capaces de absorber fotones en la región UV. Esta capacidad de absorción en la región UV, así como la ausencia de actividad fotocatalítica de los materiales grafénicos, permite introducir estos materiales como nuevos aditivos para la fotoestabilización de los recubrimientos poliméricos, es decir con mayor.
Actualmente Energeia – Graphenemex®, está en constante desarrollado de recubrimientos nanotecnológicos con mejores propiedades. A realizado estudios sobre la influencia del óxido de grafeno en el comportamiento a la intemperie de los recubrimientos de PU. Para evaluar el desempeño del óxido de grafeno, se comparó un recubrimiento de PU con óxido de grafeno (PU/GO) con un recubrimiento PU que contenía un absorbente UV orgánico comercial (PU/control).
El cambio de color en un recubrimiento durante la exposición a la intemperie (luz solar) es el parámetro más importante y rápido para evaluar visualmente la degradación de un recubrimiento. Para evaluar, el cambio de color se introdujeron muestras recubiertas de Poliuretano con y sin material grafenico, a una cámara de intemperismo acelerado (basado en la ASTM G154). De acuerdo con la norma, se empleó una cámara de intemperismo QUV modelo QUV/se para acelerar las condiciones de intemperismo. Las muestras recubiertas se expusieron cíclicamente a radiación UVA (energía 0,89 W/m2) durante 8 h, seguidas de una condensación de humedad durante 4 h a 50 °C. Se evaluó el color de los recubrimientos antes de la exposición para comparar su color inicial, y posteriormente se fue evaluando a diferente tiempo de exposición, esta evaluación se realizó hasta un llegar a tiempo de exposición de 1200 h.
El principal componente del color que suele tenerse en cuenta en el comportamiento a la intemperie es el cambio de color total o Delta E (DE). La Fig. 1, muestra la ΔE, como criterio más exhaustivo de los cambios de color, que es la suma de los cambios en todos los componentes del color.
Como puede observarse, la mayor parte de las variaciones de color a lo largo de todo el tiempo de exposición pertenecen al recubrimiento de PU/control. La muestra que contiene óxido de grafeno (PU/GO) a las 251 h del tiempo de exposición presenta un menor cambio de color en comparación al PU/control. Con el incremento del tiempo de exposición en la cámara de intemperismo, se puede apreciar que hay variaciones de color, pero la muestra con oxido de grafeno, sigue mostrando menores cambios de color, lo que es un indicativo que la incorporación de GO en el Poliuretano brinda más resistencia y mantiene su estabilidad durante más tiempo de exposición a la intemperie.
Desde un punto de vista físico, el óxido de grafeno (GO) tiene una mayor transmitancia en la región visible en comparación al grafeno, lo que resulta más favorable para su uso como protector UV en los recubrimientos de acabado. Por otro lado, gracias a la elevada área superficial de los materiales grafénicos, estos también pueden proveer excelentes propiedades efecto-barrera y con ello desarrollo recubrimientos anticorrosivos y con mayor resistencia a la intemperie.
Energeia – Graphenemex®, a través de su línea Graphenergy, tiene a la venta una amplia gama de recubrimientos nanotecnológicos con grafeno. Estos recubrimientos ofrecen alta protección anticorrosiva y antimicrobiana. Además, de brindar alta resistencia al desgaste, resistencia a los rayos UV, impermeabilidad y una extraordinaria adherencia, con la finalidad de mejorar la vida de útil de cualquier superficie o instalación y reducir los costos de mantenimiento.
Referencias
G. Wang, X. Shen, B. Wang, J. Yao, J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets, Carbon N. Y. 47 (no. 5) (2009) 1359–1364.
B. Ramezanzadeh, M. Mohseni, H. Yari, S. Sabbaghian, A study of thermal-mechanical properties of an automotive coating exposed to natural and simulated bird droppings, J. Therm. Anal. Calorim. 102 (no. 1) (2010).
N. Rajagopalan, A.S. Khanna, Effect of Methyltrimethoxy Silane Modification on Yellowing of Epoxy Coating on UV (B) Exposure vol. 2014, (2014).
M. Hasani, M. Mahdavian, H. Yari⁎, B. Ramezanzadeh. Versatile protection of exterior coatings by the aid of graphene oxide nanosheets; comparison with conventional UV absorbers. 2017.
S.M. Mirabedini, M. Sabzi, J. Zohuriaan-Mehr, M. Atai, M. Behzadnasab,
Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles, Appl. Surf. Sci. 257 (no. 9) (2011) 4196–4203.
N.S. Allen, M. Edge, A. Ortega, C.M. Liauw, J. Stratton, R.B. McIntyre, Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings, Polym. Degrad. Stab. 78 (no. 3) (2002) 467–478.
Effect of Silane Modified Nano ZnO on UV Degradation of Polyurethane Coatings. vol. 79, (2015), pp. 68–74.
M. Rashvand, Z. Ranjbar, S. Rastegar, Nano zinc oxide as a UV-stabilizer for aromatic polyurethane coatings, Prog. Org. Coatings 71 (4) (Aug. 2011) 362–368.
El triunfo del óxido de grafeno en la creación de recubrimientos contra fuego
La inclusión del Óxido de Grafeno (GO) en recubrimientos demuestra eficacia en la inhibición de la inflamabilidad, brindando una barrera resistente al fuego. Los beneficios incluyen protección anticorrosiva, propiedades antimicrobianas y mayor adherencia a sustratos. Este avance destaca la innovación de Energeia-Graphenemex en la producción de recubrimientos ignífugos, posicionándose como líder en la investigación y aplicación de materiales grafénicos de alta calidad.
Los recubrimientos son utilizados en varios sectores, a nivel industrial el uso de recubrimientos está enfocado a la protección contra la corrosión, mientras que a nivel comercial se utilizan para mantenimiento de infraestructuras y con fines decorativos. Hoy en día, la industria de los recubrimientos sigue en constante investigación para el desarrollo de recubrimientos mejorados, con propiedades antimicrobianas, antiadherentes, con mayor resistencia al ataque químico y al intemperismo. Sin embargo, a nivel comercial existen pocos desarrollos enfocados a recubrimientos ignífugos (retardantes a la flama) para la protección contra incendios en infraestructuras.
Los recubrimientos ignífugos tradicionales son revestimientos cementosos, a base de cemento Portland, cemento de oxicloruro de magnesio, vermiculita, yeso y otros minerales. Además, contienen cargas fibrosas, aglutinantes, suplementarios y aditivos que controlan la densidad y la reología, estos materiales generalmente se mezclan con agua en el sitio y se aplican mediante pulverización de alguna construcción o pueden aplicarse sobre un sustrato inflamable mediante el uso de rodillo, en espesores de media pulgada o más. Sin embargo, por su peso, espesor y mala estética, limitan el diseño arquitectónico.
En la industrial de recubrimientos y pintura, existe una amplia variedad de recubrimientos a base de diferentes tipos de resinas (polímeros) y aditivos. Debido a su naturaleza, la mayoría de estos recubrimientos son materiales inflamables y combustibles. Es decir, son materiales que se pueden incendiar cuando son expuestos al fuego, sufriendo degradación y la liberación calor para posteriormente iniciar la propagación de la flama, liberando humo y gases tóxicos, siendo un peligro para la seguridad de la vida humana y los bienes. Por otro lado, los recubrimientos ignífugos base polimérica, utilizan aditivos convencionales basados en halógenos (bromo y cloro), así como fósforo, compuestos de melamina e inorgánicos, para mejorar la resistencia al fuego de los recubrimientos, sin embargo, estos materiales son tóxicos para los seres humanos y el medio ambiente.
En los últimos años, Energeia-Graphenemex se ha enfocado en la producción de materiales grafénicos. El grafeno es el aditivo nanotecnológico más revolucionario para la industria de recubrimientos y pinturas, ya que permite el desarrollo de recubrimientos con extraordinaria protección anticorrosiva, recubrimientos con propiedades antimicrobianas, recubrimientos con mejor adherencia a los sustratos y mayor resistencia a la radiación UV. En este sentido, el óxido de grafeno (GO), ha mostrado ser un nuevo aditivo que ayuda a inhibir o reducir la inflamabilidad de los recubrimientos, para la producción de recubrimientos ignífugos (retardantes de flama) efectivos.
Su eficiencia está asociada a que el GO tiene un fuerte efecto barrera, alta estabilidad térmica y gran capacidad de absorción superficial que son favorables para reducir eficazmente la transferencia de calor y masa.
La incorporación de GO en recubrimientos pueden mejorar la resistencia a la flama, mediante la inhibición de los dos términos clave: calor y combustible. Es decir, puede funcionar como retardante de flama de las siguientes formas:
El GO posee una estructura de capas bidimensional única y puede promover la formación de una densa capa continua de carbón durante el proceso de combustión (ver Fig. 1). El carbón puede actuar como barrera física para impedir la transferencia de calor desde la fuente de calor y retrasar el escape de productos (pirolisis) del recubrimiento.
Debido a que el GO posee una gran área superficial, puede adsorber eficazmente compuestos orgánicos volátiles inflamables o dificultar su liberación y difusión durante la combustión.
La presencia de grupos oxigenados en la estructura del GO, genera que, durante la combustión del recubrimiento, los grupos que contienen oxígeno en GO pueden sufrir descomposición y deshidratación a baja temperatura, absorbiendo así calor y enfriando el sustrato polimérico durante la combustión. Mientras tanto, los gases generados por deshidratación pueden diluir la concentración de oxígeno alrededor de la periferia de ignición, disminuyendo el riesgo de propagación de fuego.
En resumen, la incorporación de GO en los recubrimientos pueden proporcionar protección contra incendios, debido a que pueden liberan agua y además proveer efectos de aislamiento térmico.
Los recubrimientos ignífugos a base de grafeno están diseñados para retardar la ignición y la velocidad de combustión, además deben proporcionar una barrera resistente al fuego.
Energeia – Graphenemex®, empresa mexicana líder en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial. Tiene amplia experiencia en la producción de óxido de grafeno (GO) a gran escala, y tiene a la venta, materiales grafénicos de alta calidad para su uso en diferentes industrias.
Referencias
Sachin Sharma Ashok Kumar, Shahid Bashir, K. Ramesh, S. Ramesh, Progress in Organic Coatings, 154, (2021)
Weil, Edward. D. Fire-Protective and Flame-Retardant Coatings – A State-of-the-Art Review. Journal of Fire Sciences, 29(3), 259–296.
Lipiäinen, H., Chen, Q., Larismaa, J., & Hannula, S. P. (2016). The Effect of Fire Retardants on the Fire Resistance of Unsaturated Polyester Resin Coating. Key Engineering Materials, 674, 277–282.
Md Julker Nine, Dusan Losic. Mahmood Aliofkhazraei, Nasar Ali, Mircea Chipara, Nadhira Bensaada Laidani, Jeff Th.M. De Hosson, Handbook of Modern Coating Technologies, Elsevier, 2021, Pages 453-492.
El concreto reforzado con fibras es una versión mejorada del concreto convencional caracterizado por un mejor desempeño ante la fisuración, deformación, fatiga e impacto. Es muy utilizado para la fabricación de pisos industriales y comerciales, túneles, taludes, tanques, concreto lanzado, prefabricados y en algunos casos como reemplazo de la malla electrosoldada de pisos, pero no como sustituto del acero de refuerzo de columnas estructurales, muros de carga o vigas suspendidas. A diferencia del concreto armado con estructuras de acero, las fibras representan un refuerzo tridimensional discontinuo y homogéneo dentro de la mezcla de concreto que le permite tener las mismas características en cada punto de la estructura.
De la extensa clasificación de fibras en cuanto a materiales, longitudes, espesores y geometrías, la principal competencia se encuentra entre las fibras de acero y las fibras de polipropileno, debido a que ambos materiales aumentan la tenacidad del concreto y le permiten continuar absorbiendo cargas antes de colapsar. La diferencia es que las fibras de acero controlan el agrietamiento durante el asentamiento plástico del concreto y después de endurecido, tienen gran resistencia a la tracción y no se deforman, sino que absorben la energía y la transforman en un esfuerzo interno; características que las hacen muy útiles para su uso en concreto expuesto a altas cargas; las fibras de polipropileno contribuyen al control de grietas por contracción plástica, por cargas externas, temperatura o contracción por secado y, aunque su resistencia a la tracción es menor que las de acero, su capacidad de deformación le permite absorber grandes cargas sin fallar; son menos costosas, más fáciles de manejar y generalmente están indicadas para concretos de menor carga.
Aunque las propiedades mecánicas de las fibras de acero son superiores a las de polipropileno y a reserva de las características del proyecto y de las normativas aplicables, existen otras diferencias técnicas que vale la pena considerar al momento de su selección:
Durabilidad– Las fibras de acero dentro del concreto suelen mantenerse estables y asiladas del medio exterior, sin embargo, cuando este aislamiento se rompe ya sea por capilaridad, microfisuración o bien, por un cambio en el pH del concreto, las fibras se vuelven susceptibles de corrosión, cuya oxidación en un futuro será la responsable de la pérdida de adherencia con el concreto. La ventaja de las fibras de polipropileno es que son aptas para su colocación en ambientes húmedos y marinos gracias a su estabilidad química, resistencia a la corrosión y a la degradación.
Peso volumétrico– La cantidad de fibras de polipropileno por kilogramo de peso es mayor que las contenidas en un kilogramo de fibras de acero; esto quiere decir que, para tener una distribución similar se deberían dosificar aproximadamente entre 5 y 8 kg de fibras metálicas por cada kilogramo de fibras de polipropileno y, aunque el peso volumétrico puede considerarse irrelevante para el desempeño, el costo y manipulación del producto pueden ser dos variables interesantes.
Distribución- Dependiendo de la cantidad dosificada, las fibras de acero pueden formar “erizos” o dejar puntas en las superficies, representando riesgos durante su manipulación y después de colocadas. Una desventaja de las fibras de polipropileno es su hidrofobicidad o incompatibilidad con el agua, esto quiere decir que cuando se realiza el mezclado mecánico de las fibras dentro del concreto compuesto por agua, cemento y agregados, estas pueden aglomerarse y causar cúmulos sobre todo a dosificaciones elevadas; en consecuencia, una mala distribución, agregación o formación de espacios de aire dentro del concreto tendrá una repercusión negativa en su adherencia y, por lo tanto, en su desempeño.
Resistencia al fuego- Ante un incendio, el concreto puede tener un comportamiento de desprendimiento explosivo o “spalling” que consiste en la expulsión violenta de fragmentos debido al aumento de presión ejercida por la salida del vapor de agua hasta que se produce el desprendimiento cuando la presión supera la resistencia a tracción del concreto. Las microfibras de polipropileno se funden a temperaturas entre 160 y 170° C, por lo tanto, crean canales interconectados que aumentan la permeabilidad del concreto y ayudan a liberar la humedad y presión interna.
La empresa mexicana Energeia- Graphenemex® a través de su división Graphenergy Construcción, aprovecha los beneficios de la nanotecnología grafénica para mejorar las características de las fibras de polipropileno convencionales; su fórmula especializada permite obtener filamentos individuales con mayor resistencia mecánica y térmica, mejor distribución y mayor adherencia dentro del concreto en comparación con las fibras comunes.
¿Cómo mejora el Óxido de grafeno el desempeño de las fibras poliméricas?
El óxido de grafeno es uno de los materiales más interesantes para mejorar las características de una gran cantidad de polímeros; consiste en láminas de grafeno o de carbono puro estabilizadas con grupos oxigenados que lo vuelve una estructura multifacética, compatible con el agua, afín con los cristales de cemento y fácilmente combinable con otros compuestos para diseñar materiales con propiedades nuevas o mejoradas, por ejemplo:
Distribución dentro de la mezcla de concreto
Una de las ventajas del óxido de grafeno diseñado para la fabricación de las fibras de polipropileno es su química superficial constituida principalmente por grupos oxigenados (OH- y COOH-) que ayudan a mantener la afinidad de las fibras con los elementos acuosos de la pasta de cemento actuando de manera similar a los aditivos plastificantes, esto se debe a que el óxido de grafeno disminuye la energía superficial de las fibras facilitando su distribución dentro de la mezcla y evitando agregados.
Adherencia
Otro beneficio del óxido de grafeno presente en las fibras de polipropileno es la repulsión electrostática que genera entre las partículas del cemento; este fenómeno evita la aglomeración del cemento y aumenta el grado de interacción fibra- cemento al alterar los productos de hidratación y aumentar su grado de polimerización. En el concreto endurecido este efecto aumenta el coeficiente de fricción de manera que, cuando una grieta desplace una fibra se requerirá más carga para poder desplazarla dentro del concreto.
Resistencia mecánica
El óxido de grafeno aumenta la resistencia a la tracción y a la rotura de los polímeros, esto se debe a que su módulo de elasticidad (230 GPa) es ligeramente superior al del acero y sus aleaciones (190-214 GPa), pero comparable con el de la Zirconia (160-241 GPa) y aleaciones de Cobalto (200-248 GPa), por lo tanto, las fibras con óxido de grafeno tienen menor riesgo de fractura y son más duraderas que las fibras comunes
Resistencia a la degradación
Las fibras poliméricas con óxido de grafeno tienen mayor vida útil debido a que es un material que diferencia de muchos otros que se deterioran por los efectos de la radiación UV, el óxido de grafeno mantiene su integridad estructural y propiedades mecánicas, ademàs, es químicamente inerte y más resistente a los medios corrosivos.
Estabilidad térmica
El óxido de grafeno aumenta la estabilidad térmica del polipropileno a partir de la formación de puentes o vías interconectadas a lo largo de la matriz del polímero mejorando el transporte de calor.
Redacción: EF/DH
Fuentes
Fabrication of graphene oxide/fiber reinforced polymer cement mortar with remarkable repair and bonding properties. J. Mater. Res. Technol. 2023; 24: 9413;
The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites J. Wang et al. / Materials and Design 195 (2020) 109073;
Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets. Composites Part A 112 (2018);
Experimental study on the properties improvement of hybrid Graphene oxide fiber-reinforced composite concrete. Diamond & Related Materials 124 (2022) 108883.
Upcycling waste mask PP microfibers in portland cement paste: Surface treatment by graphene oxide. Materials Letters 318 (2022) 132238;
An Experimental Study on the Effect of Nanomaterials and Fibers on the Mechanical Properties of Polymer Composites. Buildings 2022, 12,
State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete. Materials 2021, 14, 409;
Mecanismos de desprendimiento explosivo del hormigón bajo fuego y el efecto de las fibras de polipropileno. Estado del conocimiento. Asociación argentina de tecnología del hormigón. Revista Hormigón 62 (2022-2023) 25
una solución efectiva para prevenir el agrietamiento del concreto
A nivel global el concreto es el material de construcción más utilizado. El concreto es aplicado en diferentes infraestructuras, incluidos edificios, puentes, presas y túneles, debido a su alta resistencia a la compresión. Sin embargo, el concreto tiene algunas limitaciones y problemas, como baja resistencia a la tensión y agrietamiento. Las grietas o fisuras se pueden formar desde la producción del concreto y durante las etapas posteriores, inician como grietas a nanoescala, posteriormente se unen formando micro y macrofisuras. Este comportamiento está estrechamente asociado al proceso de hidratación que sufre el cemento, donde libera calor y aumenta la temperatura del concreto. En estructuras de gran tamaño, el calor no puede liberarse fácilmente, lo que provoca expansión, tensiones y contracción térmica, lo que conduce al agrietamiento.
Debido a que el concreto está en constante exposición al impacto, la fatiga y otro tipo de cargas, se pueden originar grietas, fisuras y fallas irreparables, por lo que es común reforzarlo con fibras poliméricas para mejorar las características físico-mecánicas del concreto.
La incorporación de fibras en el concreto ha demostrado ser eficaces para retrasar o prevenir la propagación de grietas. A nivel comercial, existe una amplia gama de fibras poliméricas como refuerzo secundario tridimensional de concreto y mortero, con diferente longitud y tamaño (macrofibras y microfibras). Estas fibras poliméricas están elaboradas a partir de materiales como polipropileno (PP), polietileno de alta densidad (HDPE), PVA y poliéster.
Sin embargo, existen algunas desventajas o limitantes de las fibras poliméricas comerciales, la naturaleza hidrofóbica de las fibras poliméricas, el módulo de elasticidad de la fibra es insuficiente, por lo que la incorporación de fibras poliméricas en el concreto solo mejora un poco la resistencia a la tensión. Además, la poca mejora en la resistencia a la tensión se atribuye principalmente a una fuerza de unión insuficiente en la interfaz entre la fibra y la matriz, es decir, una baja compatibilidad (no hay un anclaje adecuado) de la fibra con el concreto. Por lo que las fibras se desprenden fácilmente del concreto, incrementando el riesgo de agrietamiento y fallas en el concreto. (Ver Figura 1)
Actualmente Energeia Fusión- Graphenemex, bajo su línea Graphenergy Construcción ha desarrollado y tiene a la venta macrofibras poliméricas con oxido de grafeno (GO). El óxido de grafeno es un nanomaterial, que debido a sus características físicas y químicas únicas, como su gran área superficial (736.6 m2/g), extraordinarias propiedades mecánicas (25 GPa), propiedades térmicas y su única estructura con múltiples grupos que contienen oxígeno sobre su superficie, hace que el GO sea un material ideal para la modificación de la superficie de las fibras poliméricas. Estas características permiten mejorar la interfaz o compatibilidad de las fibras con los materiales cementicios y/o concreto.
Los grupos oxigenados del GO actúan como sitios de anclaje para la formación de productos de hidratación del cemento, mejorando la interfaz entre las fibras y la matriz cementosa (Ver Figura 2). En consecuencia, una interfaz más fuerte conduce en una mejora en la resistencia a la tensión del concreto.
Cuando una estructura de concreto se somete a cargas, los esfuerzos de tensión y compresión comienzan a acumularse. Con el tiempo aparecen pequeñas fisuras en lugares donde la tensión alcanza un punto crítico. En este sentido, las fibras de refuerzo Graphenergy quedan sólidamente ancladas en la matriz de concreto y absorbe el esfuerzo por tensión en cualquier punto y dirección.
Si hay una pequeña fisura las fibras se sujetan con firmeza dentro del concreto, a medida que aumenta la tensión la fibra se alarga lentamente (se deforma) hasta alcanzar su máxima resistencia. Con un porcentaje de mejora en la resistencia a la tensión de 38 % y 29 % más de alargamiento que el refuerzo comercial, las estructuras de concreto reforzadas con fibras Graphenergy pueden soportar un gran esfuerzo de flexión durante un largo periodo. Estas fibras con nanotecnología, permite retrasar la aparición de la primera grieta y ralentizar la propagación de grietas en el concreto.
La principal diferencia entre las fibras de refuerzo Graphenergy y otro tipo fibras comerciales, es que las fibras con grafeno se vuelven parte de la matriz del concreto y dan lugar a un material compuesto. Las fibras de refuerzo Graphenergy forman una red de refuerzo en toda la estructura, reduciendo o inhibiendo la aparición de grietas (control eficaz de las grietas) y mejora la ductilidad del concreto. Además, las fibras de refuerzo Graphenergy mejoran la calidad del concreto, brindando una mayor resistencia a la contracción, resistencia al fuego y mayor impermeabilidad en el concreto.
Referencias
Filho, A., Parveen, S., Rana, S., Vanderlei, R., & Fangueiro, R. (2020). Mechanical and micro-structural investigation of multi-scale cementitious composites developed using sisal fibres and microcrystalline cellulose. Industrial Crops and Products, 158, 112912.
Yao, X., Shamsaei, E., Chen, S., Zhang, Q. H., de Souza, F. B., Sagoe-Crentsil, K., & Duan, W. (2019). Graphene oxide-coated Poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites. Composites Part B: Engineering, 107010.
Lingbo Yu, Shuai Bai, Xinchun Guan, Effect of multi-scale reinforcement on fracture property of ultra-high performance concrete, Construction and Building Materials, Volume 397, 2023, 132383, ISSN 0950-0618.
Chen Lin, Terje Kanstad, Stefan Jacobsen, Guomin Ji, Bonding property between fiber and cementitious matrix: A critical review, Construction and Building Materials, Volume 378, 2023, 131169, ISSN 0950-0618.
Bolat, H., Şimşek, O., Çullu, M., Durmuş, G., & Can, Ö. (2014). The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Composites Part B: Engineering, 61, 191–198.
el nanomaterial que va a reducir el impacto de la corrosión
¿Qué es la corrosión?
El término corrosión se refiere a la destrucción de un material como resultado de sus interacciones químicas o electroquímicas con el medio circundante; la importancia de su prevención y/o control se debe a que al ser un fenómeno natural, una vez iniciado es prácticamente imposible de detener, es entonces que, una evolución descontrolada invariablemente comprometerá la integridad y vida útil de los materiales generando a la industria involucrada gastos directos e indirectos por pérdida de producto, paro de actividades por mantenimiento hasta el reemplazo de maquinaria o estructuras.
“Las pérdidas económicas causadas por corrosión superan el 3,4% del PIB mundial”
Corrosión influenciada microbiológicamente
La corrosión influenciada microbiológicamente o MIC(por sus siglas en inglés, Microbiologically Influenced Corrosion) puede definirse como el proceso electroquímico en el cual los microorganismos como algas, hongos y bacterias inician, facilitan o aceleran una reacción de corrosión, generalmente localizada en forma de grietas o picaduras sobre superficies tanto metálicas como de concreto. Aunque la corrosión involucra diversas variables, se estima que la MIC participa desde el 20 hasta el 40% de todas las fallas por corrosión, particularmente en la infraestructura hidráulica y petrolera, con costos cercanos a los 2 mil millones de dólares anuales.
¿Por qué inicia la MIC?
La presencia de humedad en cualquier entorno es el hábitat ideal para el crecimiento de numerosas comunidades de microorganismos que, aunada a condiciones óptimas de temperatura, pH, flujo de nutrientes, etc., promueve su adhesión y crecimiento sobre las superficies formando una biopelícula que si no es removida, crece hasta convertirse en una biomasa endurecida y obstructiva dentro de la cual las bacterias reductoras de sulfato, bacterias productoras de ácido, bacterias reductoras de hierro y bacterias formadoras de gel promueven la corrosión o MIC a través de reacciones electroquímicas destructivas de las superficies.
¿Cómo se combate?
Son tres los métodos más comunes para tratar de combatir la MIC, el primero es la limpieza mecánica de las superficies para remover las biopelículas idealmente en etapas incipientes, sin embargo, no siempre es posible acceder a todas las zonas expuestas dificultando su eficiencia; la segunda es el uso de agentes biocidas que, además de ser costosos, la mayoría pueden no ser amigables con la salud humana y con el medio ambiente; finalmente y, quizá el método más apto es la colocación barreras externas a manera de recubrimientos o películas poliméricas para evitar el contacto directo de las estructuras metálicas o de concreto con el medio agresivo.
Control de la corrosión en el concreto
Las opciones disponibles para proteger al concreto contra la corrosión desde su estado fresco son las adiciones de materiales puzolánicos, ceniza volante, escoria de alto horno, agregados sin sulfatos, fibras poliméricas, uso de cemento resistente a sulfatos o modificados con nanopartículas como los nanotubos y nanofibras de carbono, nanopartículas de sílice, alúmina o dióxido de titanio; para la protección en el estado endurecido es común la aplicación de barreras físicas como los recubrimientos anticorrosivos o películas poliméricas y, para la protección de las estructuras metálicas, además de los recubrimientos anticorrosivos, se puede hacer uso de estructuras galvanizadas, estañadas o la colocación de ánodos de sacrificio de magnesio. Sin embargo, se considera que, por la porosidad natural del concreto, no existen métodos totalmente eficientes que ataquen el problema de la corrosión hacia el interior de las estructuras.
La corrosión en el concreto puede ocurrir por carbonatación, ingreso de cloruros y sulfatos o por ataque microbiológico; cuando el concreto tiene acero de refuerzo y es atacado por la corrosión, se puede llegar a formar un óxido con 2 a 4 veces mayor volumen que el acero original provocando pérdida de adherencia con el concreto y poniendo en riesgo la resistencia del material. Además, la porosidad del concreto además de permitir el paso de humedad para el ingreso de iones agresivos también ofrece millones de nichos ideales para la retención de microorganismos y para la subsecuente formación de las biopelículas iniciadoras de la MIC, no solo porque favorecen su anclaje, sino porque dificultan su eliminación y promueven el avance de la corrosión.
“Se espera que para 2032 el mercado de los inhibidores de corrosión ascienda a 12,5 billones, siendo que en 2022 esta cifra oscilaba en los 8,3 billones”.
El Grafeno y el óxido de grafeno son nanomateriales multifuncionales de carbono con extraordinarias propiedades que, al incorporarse como nanorelleno de otros compuestos como recubrimientos, plásticos o cemento, tienen la capacidad de organizar molecularmente su estructura de tal forma que mejoran su resistencia frente a ataques químicos, físicos y microbiológicos. Entre sus particularidades está que son nanoestructuras inertes, es decir, son estables, no reaccionan con otros materiales y no sufren oxidación ni corrosión; son sumamente delgados y ligeros, pero a la vez, muy resistentes y flexibles; son impermeables incluso a los gases y cuentan con mecanismos antimicrobianos sumamente eficientes.
A continuación, se resumen algunas de las investigaciones más destacadas sobre el uso del grafeno como alternativa contra la corrosión influenciada microbiológicamente (MIC):
2015- El Departamento de Ciencias e Ingeniería de Materiales del Instituto Politécnico Rensselaer, Nueva York, E.U.A., modificó recubrimientos de poliuretano con grafeno identificando una protección 10 veces mayor contra la MIC en comparación con los recubrimientos de poliuretano no modificados.
2017– El laboratorio de Nanobiomateriales de la Universidad Técnica Federico Santa María, Valparaíso, Chile, evaluó el efecto directo del grafeno colocado sobre sustratos de níquel y su interacción con bacterias causantes de corrosión; los resultados evidenciaron una barrera impermeable generada por el grafeno que bloqueó la interacción entre las bacterias y el metal, pero sin efecto bactericida.
2021– El Departamento de Ingeniería Civil y Ambiental, de la Escuela de Minas y Tecnología de Dakota del Sur, E.U.A., reportó que múltiples capas de grafeno restringieron 10 veces más el ataque de la MIC sobre superficies de cobre y níquel.
2021– La Escuela de Ingeniería de la Universidad de Glasgow, Escocia, examinó el deterioro de pastas de cemento modificadas con óxido de grafeno (GO) expuestas a ambientes de ácidos. Los resultados demostraron que la presencia de GO disminuye la pérdida de masa en el concreto por dichos ataques, reconociéndolo como un aditivo potencial para modificar la microestructura y la vida útil del concreto frente a ambientes agresivos como los presentes en almacenes de productos químicos hasta los sistemas de aguas residuales.
Energeia Fusion (Graphenemex®), la empresa mexicana líder en América Latina en la producción de materiales grafénicos, después de un largo camino de investigación en 2018 lanzó al mercado la Línea Graphenergy que comprende una serie de recubrimientos anticorrosivos y antimicrobianos con nanotecnología grafénica y el primer aditivo para concreto con óxido de grafeno en el mundo, cuyo uso individual o combinado prometen grandes beneficios contra la corrosión.
Graphenergy Construcción es un aditivo base agua con óxido de grafeno diseñado para mejorar la calidad de las estructuras de cemento en términos de resistencia mecánica y durabilidad. El valor agregado que el óxido de grafeno ofrece al concreto en la lucha contra la MIC desde el exterior hacia su interior es resultado de una serie de eventos que comienzan favoreciendo la hidratación del cemento actuando como reservorios de agua y como plataforma para el crecimiento de cristales de C-S-H y para disipar el calor de hidratación; mejora las zonas de transición interfacial entre la pasta de cemento y los agregados ayudando a reducir el tamaño y volumen de los poros, esto a su vez favorece el aumento de la resistencia mecánica, reduce la permeabilidad, aumenta su resistividad, es decir, reduce la transferencia de cargas eléctricas hacia el interior del concreto retrasando el inicio de corrosión y, finalmente, modifica las cargas electrostáticas y la humectabilidad de las superficies dificultando la formación de biopelículas causantes de la MIC.
Los recubrimientos Graphenergy formulados con óxido de grafeno ofrecen gran resistencia contra la corrosión en zonas costeras y no costeras, así como una excelente protección antimicrobiana sin mecanismos biocidas, ya que su efecto consiste en evitar la adhesión de los microorganismos a las superficies. Además, su impermeabilidad, resistencia a la abrasión y resistencia contra los intensos efectos de la intemperie incrementan su vida útil y, por lo tanto, disminuyen sustancialmente los costos de mantenimiento tanto de estructuras metálicas como de concreto.
Redacción: EF/DH
Referencias
The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions. Materials 2017, 10, 1406;
Effect of graphene oxide on the deterioration of cement pastes exposed to citric and sulfuric acids. Cement and Concrete Composites, 2021, 124, 104252;
Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. Scientific Reports, 2015, 5:13858;
Atomic Layers of Graphene for Microbial Corrosion PreventionACS Nano 2021, 15, 1, 447;
Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Construction and Building Materials. 2020, 239, 117813;
Microbiologically Induced Corrosion of Concrete and Protective Coatings in Gravity Sewers. Chinese Journal of Chemical Engineering, 2012, 20(3) 433;
In situ Linkage of Fungal and Bacterial Proliferation to Microbiologically Influenced Corrosion in B20 Biodiesel Storage Tanks. Front. Microbiol. 2020, 11;
Chapter 1 – Failure of the metallic structures due to microbiologically induced corrosion and the techniques for protection. Handbook of Materials Failure Analysis. With Case Studies from the Construction Industries. 2018, 1;
Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon, 2020, 159, 586;
Gerhardus Koch, Cost of corrosion, In Woodhead Publishing Series in Energy, Trends in Oil and Gas Corrosion Research and Technologies, Woodhead Publishing, 2017;
el óxido de grafeno como coadyuvante para mejorar la resistencia y durabilidad del pavimento
El concreto, debido a su eficiencia de producción, abundantes fuentes de materia prima, trabajabilidad y versatilidad, es un material ampliamente utilizado en la industria de la construcción; entre sus numerosas aplicaciones están los pavimentos rígidos para carreteras, aeropuertos, pisos industriales y puentes, sin embargo, y pese a su excelente resistencia a la compresión, el concreto presenta limitantes como baja resistencia a la tracción y flexión que, aunado a factores como sobrecargas o condiciones ambientales, suele desarrollar fallas como agrietamiento, perforaciones, desprendimiento o erosiones que invariablemente requerirán reparación. Por lo tanto, mejorar su calidad además de aumentar su vida útil y de reducir riesgos, también permite disminuir o espaciar los trabajos de mantenimiento y, en consecuencia, evita el paro de operaciones o de cierres carreteros representando a su vez, ahorros económicos importantes.
Además de calidad y economía, otro de los objetivos de la industria de la construcción es disminuir la huella de carbono, teniendo como referencia que el principal aglomerante del concreto es el cemento y que, por cada tonelada de cemento fabricado, se libera 1 tonelada de CO2 a la atmósfera. Es por ello que constantemente se está en busca de tecnologías y/o materiales que mejoren o igualen el desempeño del concreto, en principio utilizando menor contenido de cemento mediante el uso de sustitutos de cemento como micropartículas minerales producto de desecho industrial p. ej., ceniza volante, escoria de alto horno o humo de sílice; refuerzos con fibras de acero, sintéticas o de vidrio; resinas y materiales reciclados como el hule de llanta, polipropileno, PET o el mismo concreto reciclado, así como una gran variedad de aditivos base lignosulfonato, naftaleno sulfonato, melamina o policarboxilatos para dar funciones plastificantes, reductoras de agua, acelerantes o retardantes de fraguado, entre otras. Una valiosa herramienta para agregar valor en la triada: calidad, economía y medioambiente, es la nanotecnología, partiendo de la premisa de que el cemento en su mayoría está constituido por nano cristales de C-S-H, responsables de las propiedades cohesivas, de endurecimiento y, en definitiva, de su resistencia mecánica. Esto significa que, manipular y modificar la estructura del cemento desde su nivel nano, conlleva beneficios en el nivel macro, es decir en el concreto como producto terminado.
A lo largo de los últimos diez años de investigación y aplicación de la nanotecnología en la construcción, apareció en escena el Óxido de grafeno (GO), una nanopartícula de carbono derivada del grafito con excelentes propiedades mecánicas, térmicas y de barrera; su buena dispersión en agua y gran afinidad por las nanopartículas del cemento ha demostrado atributos interesantes para acelerar la hidratación del cemento, aumentar la producción de nanocristales de C-S-H y reducir los poros del cemento que, en conjunto, representan beneficios importantes en resistencia, durabilidad y variedad de aplicaciones en infraestructura. Asimismo, se ha demostrado que la fabricación de fibras poliméricas para concreto modificadas con GO contribuye a mejorar significativamente su resistencia a la tensión, impacto, y abrasión, retrasa su deterioro por corrosión o radiación UV y lo vuelve más estable térmicamente, reduce los agrietamientos, entre otros beneficios. Derivado del gran potencial de este nanomaterial para la industria de la construcción, en 2022 la revista Sustainability utilizó la base de datos Web of Science (WoS) para realizar un análisis sobre las investigaciones generadas en el periodo 2010- 2022 respecto al uso de óxido de grafeno en compuestos de cemento. En dicho estudio se identificaron un total de 608 publicaciones relacionadas con resistencia mecánica, durabilidad, conductividad térmica, entre otras, pero solo menos de 10 revistas hicieron referencia a los beneficios integrales que el GO ofrece a los pavimentos rígidos, ya sea de manera individual o como refuerzo tridimensional mediante el uso de fibras poliméricas, lo cual representa una aplicación poco explorada, pero con grandes áreas de oportunidad.
Energeia – Graphenemex®, la empresa mexicana líder en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de productos Graphenergy construcción® en 2018 colocó por primera vez en el mercado un aditivo para concreto con óxido de grafeno que contribuye a mejorar la microestructura de los conglomerados base cemento desde sus etapas iniciales; posteriormente, en 2020 y gracias a su amplia experiencia en el manejo de nanocompositos, desarrolló una nueva generación de macrofibras poliméricas con nanorelleno grafénico. Los beneficios que el GO ofrece a nivel nano y micrométrico han sido evaluados en laboratorio y en campo sobre macro diseños de concreto, obteniendo excelentes resultados en cuanto a trabajabilidad, densidad, impermeabilidad, disipación de calor, fraguado, apariencia y con equilibradas aportaciones mecánicas de resistencia a la compresión, tensión, flexibilidad y abrasión que en conjunto complementan las necesidades económicas, ambientales y de calidad de los pavimentos rígidos, entre muchas otras estructuras base cemento. Su uso es muy sencillo y no requiere equipos ni procesos adicionales a los que regularmente se utilizan en la construcción, además de que permite ajustes en su manipulación, dosificación y uso en conjunto con otros aditivos para mejorar su desempeño.
Redacción: EF/DHS
Referencias
Houxuan Li, et al., Recent progress of cement-based materials modified by graphene and its derivatives. Materials 2023, 16, 3783. 2. I. Fonseka, et al., Producing sustainable rigid pavements with the addition of graphene oxide. 2023; 3. Byoung Hooi Cho., Concrete composites reinforced with graphene oxide nanoflake (GONF) and steel fiber for application in rigid pavement. Case Stud. Constr. Mater. 2022; 17: e01346; 4. Kiran K. Khot, Experimental study on rigid pavement by using nano concrete. Int Res J Eng Techno, 2021; 08: 07,4865; 5. Jayasooriya, D. et al., Application of graphene-based nanomaterials as a reinforcement to concrete pavements. Sustainability 2022, 14, 11282; 6. Sen Du, et al., Effect of admixing graphene oxide on abrasión resistance of ordinary portland cement concrete. AIP Advances. 2019; 9: 105110; 7. D. Mohottia, et al., Abrasion and Strength of high percentage Graphene Oxide (GO) Incorporated Concrete. J. Struct. Eng. 2022; 21: 1; 8. Fayyad, T., Abdalqader, A., & Sonebi, M. An insight into graphene as an additive for the use in concrete. In Civil Engineering Research Association of Ireland Conference 2022 (CERAI 2022): Proceedings (CERAI Proceedings).
Aditivo de Grafeno para Minimizar Agrietamiento Térmico
En el concreto los agentes aglutinantes son principalmente una combinación de materiales puzolánicos y cemento que, durante el proceso de hidratación libera calor acompañado de cambios volumétricos. Este fenómeno en presencia de elementos con baja disipación térmica evita que el calor se difunda eficientemente dando como resultado un gradiente de temperatura entre la superficie exterior y el núcleo interior. Es decir, la temperatura en la superficie de la mezcla suele enfriarse con mayor velocidad, pero en su interior dicha temperatura aumenta gradualmente. Esta falta de uniformidad en la distribución del calor puede generar grandes tensiones de tracción responsables del conocido agrietamiento térmico del concreto.
Entre las estrategias actuales para reducir dichas tensiones térmicas están la colocación de tuberías de enfriamiento, uso de cemento Portland de bajo calor, materiales de cambio de fase, fibras poliméricas o el aislamiento de la superficie. Sin embargo, poco se atiende mejorar la propagación del calor en el propio cemento. En este sentido y al ser el cemento un material nanoestructurado por el contenido de nanopartículas de C-S-H, no es raro que la nanoescala sea una de las tendencias más innovadoras de la ingeniería civil moderna, pues está comprobado que la mayoría de las afectaciones del concreto como es el caso del agrietamiento térmico, tienen origen en distintos factores químicos y mecánicos de la estructura del cemento, el principal aglutinante del concreto.
El óxido de grafeno (GO) es una versión oxidada del Grafeno, el nanomaterial que, a lo largo de la última década, ha sido el centro de atención de numerosas industrias, incluida la industria de la construcción. Ambas nanoestructuras son una única lámina de átomos de carbono densamente organizados que otorgan numerosas propiedades mecánicas, térmicas, eléctricas, entre otras.
El GO a diferencia del Grafeno, contiene una gran cantidad de grupos oxigenados del tipo epóxido (C-O-C), hidroxilo (-OH) y carboxilo (-COOH) que lo convierten, por un lado, en un material fácilmente dispersable en agua y por otro, le dan la capacidad de interactuar con las nanopartículas C-S-H del cemento para transferir sus propiedades y mejorar su desempeño y durabilidad desde la micro y nano escala.
Conductividad térmica
La conductividad térmica del GO dependiendo del grado de oxidación puede alcanzar los 670 W/ (m K), mientras que la conductividad del cobre y el aluminio es de aproximadamente 384 y 180 W/ (m K), respectivamente. Esto significa que, el GO puede conducir el calor de manera más eficiente que los metales; no obstante, transferir esta propiedad a otros materiales, no es tarea sencilla, para ello es importante vencer tres retos principales:
i) Tener amplio conocimiento científico de los materiales grafénicos, de ser posible, desde su síntesis o producción,
ii) Controlar la calidad en el diseño de la mezcla y,
iii) Tener una visión integral, tanto técnica como científica para el uso adecuado y distribución de las nanopartículas de GO con el cemento para lograr los objetivos planteados.
Graphenergy Construcción® es un aditivo multipropósito base agua con una fórmula especializada a partir de Óxido de grafeno que favorece el proceso de hidratación del cemento no solo actuando como promotor para la formación de una red de cristales de C-S-H responsables de la densificación y resistencia del concreto, sino que también mejora la conductividad térmica durante su hidratación y fraguado.
Durante la hidratación del cemento ocurre una reacción exotérmica, es decir, se libera calor que es también acompañado por cambios de volumen. Cuando este calor no se disipa eficientemente se pueden generar grandes tensiones de tracción responsables del conocido agrietamiento térmico del concreto.
La mencionada red cristalina de la estructura del GO le permite disipar con gran eficiencia la temperatura e incluso soportar intensas corrientes eléctricas sin calentarse.
En el caso particular de las mezclas de concreto en estado fresco, Graphenergy Construcción® promueve una distribución de calor más homogénea, minimizando el gradiente de temperatura y cambios volumétricos, por lo tanto, reduce la probabilidad de fisuración térmica.
En el caso del concreto endurecido y pese a que es un material aislante, cuando se expone a temperaturas cercanas a los 400°C se pone en riesgo significativamente su resistencia mecánica. El uso de Graphenergy Construcción® reduce este riesgo, ya que se ha probado que con su aplicación se genera una diferencia de temperatura 70% inferior al parámetro requerido por la prueba entre la superficie expuesta y la no expuesta al fuego.
Por lo tanto, la aportación de la nanored del GO presente en Graphenergy Construcción® ayuda a distribuir homogéneamente la temperatura de hidratación y fraguado, reduce el riesgo de agrietamiento térmico, aumenta la resistencia del concreto a altas temperaturas y, finalmente, ofrece una excelente opción sustentable para el ahorro energético particularmente para aquellas construcciones cuya localización geográfica obliga al uso de equipos de climatización, logrando reducciones de temperatura de hasta 3 °C en el interior de las edificaciones.
Redacción: EF/DHS
Referencias
Tanvir S., et al. Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets. Compos. B. Eng. 2020; 197: 15, 108063,
Dong Lu., et al. Nano-engineering the interfacial transition zone in cement composites with graphene oxide. Constr. Build. Mater. 2022; 356: 129284,
Peng Zhang., et al. A review on properties of cement-based composites doped with Graphene. J. Build. Eng. 2023: 70, 106367,
WANG Qin et al., Research progress on the effect of graphene oxide on the properties of cement-based composites. New Carbon Mater. 2021; 36: 4,
Junjie Chen, Effect of oxidation degree on the thermal properties of graphene oxide. j mater rest technol. 2020; 9:13740,
Karthik Chintalapudi. The effects of Graphene Oxide addition on hydration process, crystal shapes, and microstructural transformation of Ordinary Portland Cement. J. Build. Eng. 2020; 32, 101551,
Guojian Jing et al., Introducing reduced graphene oxide to enhance the thermal properties of cement composites. Cem Concr Compos. 2020; 109, 103559,
Jinwoo An et al., Edge-oxidized graphene oxide (EOGO) in cement composites: Cement hydration and microstructure. Compos. B. Eng. 2019; 173, 106795
Mejorando la protección y la productividad agrícola
gracias a las películas plásticas con óxido de grafeno
Las aplicaciones de los materiales plásticos son muy diversas, para el uso en agricultura destaca la formulación y desarrollo de películas plásticas para cubiertas de invernaderos, macrotúneles y microtúneles y para el acolchado de suelos. Entre los materiales plásticos más utilizados se encuentran el Polietileno Lineal de Alta Densidad (HDPE), Etilvinilacetato (EVA), en el caso de cubiertas para estructuras, y el Polietileno Lineal de Baja Densidad (LLDPE) como polímero principal para la fabricación de películas para acolchado de suelos.
Las películas de plástico con capacidad para convertir y transmitir energía solar son materiales de gran interés para aplicaciones fototérmicas en agricultura. En este sentido, el desarrollo de películas de acolchado con buenas propiedades mecánicas y propiedades de conversión fototérmica adecuadas para el campo agrícola sigue siendo una demanda urgente.
En años recientes, el grafeno, ha atraído una considerable atención debido a su singular estructura en láminas, sus extraordinarias propiedades fototérmicas y sus propiedades mecánicas.
Para mejorar la eficiencia de la conversión solar de las películas plásticas, se puede incorporar nanomateriales a base de carbono como: el grafeno (GnP), óxido de grafeno (GO) y oxido de grafeno reducido (RGO), debido a que poseen una excelente capacidad de absorción de luz con un amplio rango espectral (desde el ultravioleta hasta el infrarrojo cercano), y pueden convertir la energía luminosa en energía térmica (propiedad fototérmica).
Desarrollos recientes en la formulación de las películas, buscan el bloqueo de la radiación UV, el efecto de flourescencia, películas ultratérmicas y películas más impermeables. Otras propiedades claves deseadas en las películas plásticas son resistencia mecánica (mayor durabilidad), propiedades ópticas y efecto antigoteo.
Estudios recientes, han reportado los valores de permeabilidad al vapor de agua (WVP) en películas plásticas compuestas con grafeno a diferentes concentraciones (0, 2, 4, 6 y 8% en peso). Donde se encontró que la permeabilidad al vapor de agua en las películas disminuye continuamente (mejora la propiedad barrera) conforme se incrementa la concentración de grafeno en las películas. Esta evaluación se realizo a diferentes porcentajes de humedad relativa (RH), donde se pudo observar buen desempeño en la propiedad de barrera en diferentes porcentajes de humedad (32%, 55% y 76%), ver Fig. 1.
Cuando el contenido de grafeno aumenta hasta 8 % en peso, la WVP de las películas compuestas disminuye de 3.9 x10-10, 5.5 x10-10, y 7.6 x10-10g/m·h·Pa a 0.6 x10-10, 0.8 x10-10, y 1.2 x10-10g/m·h·Pa a 32%, 55% y 76% de humedad relativa, respectivamente. Esta disminución en la permeabilidad está asociada, a que el grafeno forma barreras a nivel molecular en las películas plásticas, dando origen a caminos más tortuosos para la difusión de las moléculas de vapor de agua o de moléculas de oxígeno, limitando su transportación a través de la película plástica. Esta disminución también puede evitar en gran medida la evaporación y perdida de agua, un recurso muy valioso en estos tiempos de escases.
En la Fig. 2, se muestra las curvas de tensión de las películas compuestas con grafeno. Se encontró que la resistencia a la tensión de las películas con grafeno (2-8 % en peso), incremento hasta 22.6 MPa en comparación con la película virgen o control (18.3 MPa). Mientras que el Modulo de Young incremento continuamente de 95.7 a 171.2 MPa con el contenido de grafeno de 0 a 8% en peso, estos resultados muestran una mejora en la resistencia mecánica.
Desde el punto de vista del horticultor, las propiedades mecánicas más relevantes son: la resistencia a la tracción, al rasgado y al impacto. La resistencia a la tensión valora la capacidad de la película para soportar esfuerzos de tensión y es muy importante durante el montaje de la película en el acolchado.
En cuanto a los avances en los compuestos poliméricos con grafeno y derivados en aplicaciones de conversión de energía solar. La Fig. 3 ilustra la eficiencia de conversión fototérmica de las películas en la superficie del suelo. Se observó que la eficiencia de conversión fototérmica de las películas compuestas con grafeno aumenta gradualmente con el contenido de grafeno.
Las películas compuestas a concentraciones de 2,4,6 y 8 % en peso de grafeno, mostraron una eficiencia en conversión fototérmica mayor (10.1, 19, 26 y 40.3%) que la película control (6.7%) para una temperatura de 27°C, lo que indica que las películas compuestas de grafeno pueden adsorber la luz de forma eficaz y pueden convertir la energía luminosa en suministro térmico que puede aumentar rápidamente la temperatura del suelo.
Curiosamente todas las películas compuestas con grafeno mostraron un mejor rendimiento de conversión fototérmica para aumentar la temperatura del suelo en comparación con el grupo de control. Estos resultados indican que las películas compuestas poseen buenas propiedades mecánicas y adecuadas propiedades de conversión fototérmica que pueden utilizarse potencialmente en películas de acolchado para mejorar la temperatura del suelo y mantener la humedad del suelo, lo que es beneficioso para el crecimiento y la producción de los cultivos agrícolas.
Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, a través de su línea de Graphenergy Masterbatch, ha desarrollado y tiene a la venta una amplia gama de masterbatches con grafeno (concentrado de grafeno), con polímeros de gran uso en la agricultura y/o horticultura, como LLDPE, LDPE, y HDPE. Nuestros Masterbatches son materiales granulados que actúan como refuerzos multifuncionales para la elaboración de películas plásticas más resistentes de menor permeabilidad y con alto grado de conversión fototérmica.
Referencias
Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. P. Khanam, M.A. AlMaadeed, M. Ouederni, E. HarkinJones, B. Mayoral, A. Hamilton, D. Sun. 2016, Vacuum , Vol. 130, págs. 63-71.
Sun, Q., Geng, Z., Dong, J., Peng, P., Zhang, Q., Xiao, Y., & She, D. (2020). Graphene nanoplatelets/Eucommia rubber composite film with high photothermal conversion performance for soil mulching. Journal of the Taiwan Institute of Chemical Engineers.
Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, J. H. Lee. 2012, Polymer Testing, Vol. 31, págs. 31-38.
We want to be close to you
We ask for your data to support you in any technical questions you may have.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
We want to be close to you
We ask for your data to support you in any technical questions you may have.
We want to be close to you
We ask for your data to support you in any technical questions you may have.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
We want to be close to you
We ask for your data to support you in any technical questions you may have.
[contact-form-7 id=”294823″ title=”HS | Aditivos de Concreto – EN”]
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
Queremos estar cerca de ti
Pedimos tus datos para apoyarte en cualquier duda técnica que tengas.
We want to be close to you
We ask for your data to support you in any technical questions you may have.
[contact-form-7 id=”d1da5ad” title=”HS | Masterbatch de Tereftalato de Polietileno con óxido de grafeno EN”]