Carbonatación y Óxido de Grafeno:

Carbonatación y Óxido de Grafeno:

Una Solución para Reducir Emisiones de CO₂

En artículos previos hemos tratado sobre la influencia de la industria del cemento en las emisiones de CO2 y de los compromisos adquiridos para su reducción hacia el año 2050. El día de hoy hablaremos de cómo el fenómeno de carbonatación que generalmente es considerada como una patología en el concreto, podría compensar en cierta medida el CO2 liberado durante la fabricación del cemento.

¿Qué es la carbonatación? 

En el concreto la carbonatación es un proceso natural que ocurre por la reacción entre el dióxido de carbono (CO2) del ambiente con la humedad del concreto, transformando al hidróxido de calcio alcalino de la pasta de cemento a carbonato de calcio con un pH más neutral. Este fenómeno hace que el concreto que usualmente se encuentra entre pH 12 y 13, ahora se encuentre alrededor de 9, haciendo que el acero de refuerzo pierda su capa protectora y quede expuesto para ser atacado por la corrosión.

¿De qué depende la carbonatación?

La tasa de carbonatación está controlada por la difusividad del CO2 y su reactividad con la matriz cementante, a la vez dependiente de su microestructura conformada por productos de hidratación (hidróxido de calcio, hidrato de silicato de calcio, óxidos alcalinos, etc.) y por la estructura de los poros (distribución, tamaño y saturación). Por lo tanto, en concretos poco permeables o mejor aún, secos, la carbonatación será mucho más lenta que en concretos permeables o con 50 o 60% de humedad. Por esta razón, durante la fabricación del concreto suelen utilizarse adiciones micrométricas del tipo ceniza volante, escoria de alto horno, metacaolín, humo de sílice y algunos nanomateriales para reducir la porosidad, así como para disminuir la cantidad de hidróxido de calcio y promover la formación de C-S-H. Además de otras prácticas como la aplicación de recubrimientos en la superficie del concreto. 

La carbonatación como herramienta para la reducción de emisiones

La carbonatación puede concebirse de dos maneras, la primera y la más conocida, es como una patología del concreto y la segunda, como una oportunidad para reducir el CO2 atmosférico. Esto se debe a que existen dos tipos de carbonatación, la natural y la acelerada. La carbonatación natural es un proceso lento que ocurre en el largo plazo y que no tiene la capacidad de captar CO2, mientras que la carbonatación acelerada o mineral, por su parte, utiliza una alta concentración de CO2 que acelera el proceso de hidratación del cemento y produce carbonatos en los cuales el CO2 se almacena permanentemente en forma mineral termodinámicamente estable. Este proceso también se conoce como recarbonatación, porque dicho carbonato es el mismo que se utiliza como materia prima para la fabricación del cemento. Empresas como Blue planet, Carbon cure, Solidia technologies y Carbi crete están desarrollando estrategias para secuestrar hasta 17 kg de CO2 por metro cubico de concreto principalmente prefabricado debido a que es un proceso que debe realizarse en condiciones controladas.

El óxido de grafeno (GO, por sus siglas en inglés) es una nanoestructura de carbono cuya multifuncionalidad ofrece numerosos beneficios para distintas industrias. En lo que respecta al concreto, sus ventajas se dirigen a mejorar su resistencia mecánica y durabilidad, pero poco se ha descrito sobre sus efectos en la carbonatación y captación de CO2.

Una investigación realizada por la Universidad de Arlington, Texas en 2022, estudió el mecanismo de interacción del óxido de grafeno en concretos curados bajo carbonatación acelerada. Los resultados arrojaron que GO al mejorar la hidratación del cemento permite que los poros del concreto se refinen con la precipitación y depósito de carbonato de calcio sobre los productos de hidratación y las partículas de cemento, de tal forma que su crecimiento en las superficies limita la reacción química entre los productos de hidratación y el CO2 bajo un flujo continuo de CO2. Con esto concluyeron que, el GO además de mejorar las propiedades mecánicas del concreto, también puede ayudar a capturar y almacenar hasta un 30% de CO2 atmosférico durante las etapas tempranas de curado.

Redacción: EF/ DHS

Referencias

  1. Geetika Mishra, et al., Carbon sequestration in graphene oxide modified cementitious system, Journal of Building Engineering, 2022, 62, 105356;
  2. Nur Azni Farhana Mazri et al., Graphene and its tailoring as emerging 2D nanomaterials in efficient CO2 absorption: A state-of-the-art interpretative review. Alexandria Engineering Journal, 2023, 77, 479;
  3. Mohd Hanifa et al., A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies, Journal of CO2 Utilization, 2023, 67, 102292;
  4. Yating Ye et al., Optimizing the Properties of Hybrids Based on Graphene Oxide forCarbon Dioxide Capture, Ind. Eng. Chem. Res. 2022, 61, 1332;
  5. Sanglakpam Chiranjiakumari Devi et al., Influence of graphene oxide on sulfate attack and carbonation of concrete containing recycled concrete aggregate, Construction and Building Materials, 2020, 250, 118883

Avances en Protección Ignífuga:

Avances en Protección Ignífuga:

La Promesa del Óxido de Grafeno en Recubrimientos Intumescentes

Los recubrimientos intumescentes son pinturas especializadas que se aplican en las estructuras de concreto y acero de todo tipo de edificios industriales y/o residenciales para brindar protección ante un incendio, no solo en materia de infraestructura, sino en cuanto a seguridad, dando el tiempo necesario para la asistencia y evacuación de las instalaciones.

Ante un incendio, este tipo de recubrimientos se expande y forma una espuma carbonizada que aísla del fuego y limita su propagación, al mismo tiempo que libera gases no combustibles que reducen la concentración de oxígeno alrededor de las estructuras protegiéndolas de daños mayores durante 1 y 3 h aproximadamente.

Los componentes principales de los recubrimientos intumescentes son: un aglutinante polimérico, una fuente de ácido (p. ej. polifosfato de amonio – APP), un aditivo de expansión (p.ej. melamina – MEL), una fuente de carbono (p.ej. pentaeritritol – PER) y otros elementos de relleno (p.ej. grafito expandible) que también suelen influir en el factor de expansión y en el retardo de fuego.

Pese a su gran eficiencia, la espuma carbonizada formada por el sistema APP-MEL-PER- puede tener poca resistencia a la oxidación a altas temperaturas conduciendo a una baja eficiencia de retardo y fácil destrucción durante la combustión. Por tal motivo, también se han explorado otros aditivos como el carbonato de calcio, hidróxido de aluminio, sílice y algunos materiales de carbono para mejorar su protección. Por ejemplo, el grafito expandible en recubrimientos epóxicos mejora la degradación térmica y la resistencia al fuego; los nanotubos de carbono reducen la tasa de liberación de calor en polímeros y el GO, gracias a su nanoestructura reticular ha sido identificado como una barrera térmica eficaz para prevenir la difusión de la llama y reducir la propagación del calor. Esto sucede porque el GO al dispersarse homogéneamente dentro de la matriz del recubrimiento forma un “camino tortuoso” para reducir la velocidad de difusión térmica y de descomposición de la matriz, por lo tanto, puede mejorar la propiedad ignífuga y la resistencia mecánica del recubrimiento.

Pese a que hasta el momento no existen recubrimientos intumescentes con óxido de grafeno en el mercado, las investigaciones han concluido que el GO puede mejorar el sistema APP-MEL-PER, puesto que se ha identificado que promueve la reacción de descomposición del APP que a su vez acelera la formación del ácido fosfórico que reacciona con el PER para formar carbono. Y, aunque se ha observado que, por un lado, el GO puede llegar a disminuir la estabilidad térmica de los recubrimientos, su presencia favorece la producción de gases y los coeficientes intumescentes reduciendo la conductividad térmica.

Energeia- Graphenemex, en colaboración con una reconocida compañía mexicana de recubrimientos especializados, están trabajando en un nuevo desarrollo para lanzar al mercado el primer recubrimiento intumescente con óxido de grafeno para continuar colocando a México a la vanguardia de nuevas tecnologías.

Redacción: EF/DHS

Referencias

  1. Wang Zhan et al., Influence of graphene on fire protection of intumescent fire retardant coating for steel structure, Energy Reports 6 (2020) 693;
  2. Qiuchen Zhang et al., Effects and Mechanisms of Ultralow Concentrations of Different Types of Graphene Oxide Flakes on Fire Resistance of Water-Based Intumescent Coatings, Coatings 2024, 14, 162;
  3. M. Sabet, et al., The Effect of Graphene Oxide on Flame Retardancy of Polypropylene and Polystyrene, Materials Performance and Characterization 9, no. 1 (2020): 284;
  4. Cheng‑Fei Cao et al., Fire Intumescent, High‑Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra‑Fast Fire Warning, Nano-Micro Lett. (2022) 14:92;
  5. Quanyi Liu et al., Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106539

El Impacto del Grafeno en la Industria del Plástico:

El Impacto del Grafeno en la Industria del Plástico:

Innovación y Sostenibilidad

Los orígenes del plástico se remontan al año 1860 en Estados Unidos, cuando la compañía Phelan & Collander en medio de una crisis en las reservas de marfil, un material muy utilizado para la fabricación de distintos objetos como bolas de billar, teclas de piano, joyería, botones y estructuras decorativas, convocó al desarrollo de un material capaz de sustituir al marfil a cambio de una atractiva compensación económica para la época. Fue entonces que, John Wesley Hyatt presentó la propuesta del “celuloide”, un carbohidrato proveniente de las plantas que, si bien no logró sustituir en su totalidad al marfil, sí fue el punto de partida para el desarrollo del plástico, con sucesores inmediatos como la baquelita o el PVC hasta los actuales plásticos de ingeniería.

“La palabra plástico proviene del griego “plastikos” que significa que se puede moldear”

Los plásticos son materiales sintéticos que se obtienen por distintos procesos de polimerización a partir de derivados del petróleo. Su evolución y perfeccionamiento desde sus primeras apariciones los han colocado al día de hoy en materiales prácticamente indispensables para numerosas actividades e industrias. Sin embargo, después de tantos años de uso descontrolado, además de representar soluciones o alternativas para incontables necesidades, los plásticos también se han convertido en una problemática ambiental y sanitaria ya que, así como ha crecido su versatilidad y demanda, también ha incrementado la cantidad de residuos. Por lo tanto, la ya no tan nueva filosofía de circularidad sostenible o economía circular no se limita a tomar conciencia sobre el uso adecuado y aprovechamiento de los recursos, sino que se extiende a adaptaciones económicas, de infraestructura y de procesos como el reciclaje.

El reciclaje es el hecho de someter a los materiales usados, en este caso a los plásticos, a un reprocesamiento para que puedan volver a utilizarse y, aunque indiscutiblemente es una excelente herramienta para preservar los recursos naturales y para reducir la cantidad de desechos, es importante tener en cuenta dos aspectos, el primero es que el reciclaje no aplica en todos los casos porque no todos los plásticos son reciclables y el segundo, es que su reprocesamiento conlleva etapas o pasos durante los cuales los materiales pueden perder propiedades respecto a los plásticos vírgenes, limitando su uso en muchas aplicaciones industriales.

Durante los últimos veinte años la intervención de la nanoingeniería para la modificación de polímeros como el polietileno (PE), polipropileno (PP), el polietilentereftalato (PET), entre otros con nanopartículas de carbono como el grafeno o los nanotubos de carbono (CNT), ha arrojado resultados muy interesantes en torno al mejoramiento de las propiedades mecánicas, reológicas, eléctricas y/o térmicas de los materiales. La ventaja del grafeno sobre los CTN, además de otras propiedades intrínsecas, es que es un nanomaterial en forma de lámina cuya gran superficie de área y mayor facilidad de dispersión le permite crear fases más homogéneas para mejorar la transferencia de carga y, por lo tanto, incrementar la resistencia mecánica de los plásticos modificados.

Empresas como Gerdau Graphene (Brasil), Graphenetech S.L. (España), Colloids (Reino Unido) y Energeia- Graphenemex (México) en los últimos 5 años han logrado posicionar en el mercado distintos tipos de masterbatches o plásticos concentrados con grafeno para distintas aplicaciones; si bien cada compañía tiene sus propios objetivos y mercados, entre ellas existen puntos ambientales y económicos de convergencia que los motivaron a mejorar la industria del plástico, debido a que el grafeno incluso a bajas concentraciones (< 2 % peso) puede mejorar la calidad de los polímeros tanto vírgenes como reciclados. Por ejemplo, el grafeno puede incrementar en 30% el módulo de flexión y en 40% la resistencia al impacto, pero también puede aumentar la resistencia a la tensión hasta en un 17% y en 60% la resistencia a la ruptura e incluso aumentar la resistencia a la fotodegradación. Con esto y dependiendo de las necesidades muy particulares de cada desarrollo o aplicación es posible reestablecer algunas de las propiedades mecánicas de los plásticos reciclados y/o extender el tiempo de vida de los materiales con la finalidad de reducir la cantidad circulante de plásticos de un solo uso o en su defecto, lograr las mismas propiedades mecánicas de los polímeros, pero con menor espesor.

Energeia – Graphenemex®, la empresa mexicana líder en América Latina en investigación y producción de materiales grafénicos para aplicaciones industriales, a través de su línea de Graphenergy Masterbatch en 2023 lanzó al mercado una amplia gama de masterbatches con grafeno para ser utilizados como aditivos de refuerzo multifuncional. Entre sus principales ventajas están:

  • Excelente dispersión dentro de la matriz polimérica,
  • Pueden ser incorporados a polímeros reciclados,
  • Incrementan la resistencia a la tensión, deformación e impacto,
  • Mejoran la resistencia a rayos ultravioleta,
  • Facilitan las condiciones de procesamiento (estabilidad térmica),
  • Actúan como agentes nucleantes (modificación de la temperatura de cristalización del polímero).

Redacción: EF/DHS

Referencias:

  1. Ramazan Asmatulu et al., Synthesis and Analysis of Injection-Molded Nanocomposites of Recycled High-Density Polyethylene Incorporated With Graphene Nanoflakes, POLYMER COMPOSITES—2015;
  2. Feras Korkees et al., Functionalised graphene effect on the mechanical and thermal properties of recycled PA6/PA6,6 blends. 2021 Journal of Composite Materials 55(16);
  3. Devinda Wijerathne et. al., Mechanical and graphe properties of graphene nanoplatelets-reinforced recycled polycarbonate composites. International Journal of Lightweight Materials and Manufacture 6 (2023) 117e128;
  4. Abdou Khadri Diallo et al., A multifunctional additive for sustainability, Sustainable Materials and Technologies, 33, 2022, e000487.

Innovación con Grafeno

Innovación con Grafeno

Hacia una Industria del Cemento Más Sostenible y Eficiente

Parte 2

Para la industria del cemento la reducción en las emisiones de CO2 no es un tema nuevo, de hecho, a lo largo de los últimos 30 años los productores han logrado reducir aproximadamente el 40% del combustible necesario para el proceso de Clinkerización, disminuyendo con esto la misma proporción de CO2, esto se debe a que por cada kilogramo de cemento se producen alrededor de 900 g de CO2.

Por otro lado, hace poco más de 10 años la colaboración entre la Agencia Internacional de Energía, la Asociación Global del Cemento y el Concreto (GCCA) y la Federación Interamericana del Cemento (FICEM) fijaron la primera Hoja de Ruta para la reducción de emisiones, sentando con ello las bases para que, en 2021 la Cámara Nacional del Cemento (CANACEM), la FICEM y las cementeras CEMEX, Cruz Azul, Cementos Chihuahua, Cementos Fortaleza, Holcim México y Cementos Moctezuma hicieran lo propio para evaluar sus emisiones y determinar las estrategias durante la producción del cemento “Hacia una economía baja en carbono”.

De acuerdo con la Hoja de ruta de la industria del Cemento en México publicada por la CANACEM, los principales indicadores para la reducción de CO2 son: 1. el factor Clinker/Cemento, 2. el co- procesamiento, 3. la eficiencia energética y, 4. la exploración de nuevas tecnologías que permitan la captación de CO2, la reducción de Clinker y/o el reforzamiento del cemento.

En el artículo anterior que trata sobre las problemáticas medioambientales de la industria de la construcción y de la consecuente meta por cumplir del cero neto de emisiones de CO2 para el año 2050, se abordaron las más reconocidas áreas de oportunidad que la nanotecnología grafénica tiene para una construcción sostenible, como:

1. Reducción del cemento,

2. Aprovechamiento de residuos,

3. Reducción de costos y,

5. Eficiencia energética.

Asimismo, el pasado 4 de septiembre, el portal https://www.graphene-info.com/ publicó la nueva edición del Graphene-enhanced Construction Materials Market Report en el cual se habla con mayor profundidad sobre las ventajas del uso del grafeno en materiales de construcción, las empresas relacionadas con esta industria en todo el mundo, así como los proyectos actuales e investigaciones relacionadas.

El óxido de grafeno (GO) es un nanomaterial de la familia del carbono en forma de láminas con un tamaño menor a 100 nm o 0.1 micrones en extensión y con tan solo un átomo de espesor; a lo largo de su superficie contiene grupos funcionales del tipo hidroxilo (OH), epoxi (-O-), carboxilo (COOH) y carbonilo (C=O) que le permiten interactuar con los cristales de C-S-H del cemento mejorando el proceso de hidratación. Entre las características del GO que lo volvieron atractivo para su estudio como modificador químico del cemento, son su gran resistencia a la tracción (130 GPa), extensa superficie de área (2630 m2/g), alta conductividad térmica (5300 W/mK) y propiedades de barrera. De tal forma que dicha interacción ayuda a mejorar las características de las estructuras base cemento como el concreto, permitiendo lo siguiente:

1. Consumir menos cemento en las estructuras de concreto logrando propiedades mecánicas similares, a partir del incremento en la resistencia a la compresión desde un 5 hasta un 30%, mayor resistencia a la tensión entre un 8 y un 20%, aumento en el módulo elástico entre 4 y 12% e incremento en resistencia a la abrasión entre el 10 y 12%.

2. Fabricar estructuras de concreto de mejor calidad y mayor durabilidad, gracias a una menor porosidad e incrementando su impermeabilidad entre un 12 y 60%, mejorando su desempeño ante entornos agresivos.

3. Mejorar la difusividad térmica del concreto y, en consecuencia, tener un mayor control del agrietamiento térmico del concreto, mayor resistencia al fuego y capacidad de deshielo sobre pavimento.  

4. Favorece la trabajabilidad, mejora la apariencia de las estructuras, acelera el tiempo de fraguado y mejora el desmolde debido a que el GO actúa como catalizador en la reacción de hidratación del cemento.

5. Protege contra la corrosión microbiológicamente inducida, ya que la presencia del GO limita las condiciones necesarias para el anclaje y reproducción microbiana.

Energeia- Graphenemex® desde 2018 se ha dedicado a explorar los beneficios de la nanotecnología grafénica en distintos sectores industriales y, como expertos en la materia siempre recomienda que, para lograr a satisfacción los resultados mencionados y dadas las múltiples variables del sector de la construcción, sobre todo aquellas relacionadas con los nuevos ajustes en la composición del cemento, es importante realizar las pruebas de validación necesarias siempre asesorados por el personal capacitado para llegar al punto óptimo de dosificación.

Redacción: EF/DHS

Referencias

  1. M. Murali et al., Utilizing graphene oxide in cementitious composites: A systematic review. Case Studies in Construction Materials 17 (2022) e01359.
  2. Z. Pan, et al., Mechanical properties and microstructure of a graphene oxide–cement composite, Cem. Concr. Compos. vol. 58 (2015) 140–147, https://doi. org/10.1016/j.cemconcomp.2015.02.001
  3. E. Cuenca, L. D’Ambrosio, D. Lizunov, A. Tretjakov, O. Volobujeva, L. Ferrara, Mechanical properties and self-healing capacity of ultra high performance fibre reinforced concrete with alumina nano-fibres: tailoring ultra high durability concrete for aggressive exposure scenarios, Cem. Concr. Compos. vol. 118 (2021).
  4. N. Makul, Modern sustainable cement and concrete composites: review of current status, challenges and guidelines, Sustain. Mater. Technol. vol. 25 (2020); 5. L. Lu, P. Zhao, Z. Lu, A short discussion on how to effectively use graphene oxide to reinforce cementitious composites, Constr. Build. Mater. vol. 189 (2018) 33–41.
  5. Q. Wang, J. Wang, C.-x Lu, B.-w Liu, K. Zhang, C.-z Li, Influence of graphene oxide additions on the microstructure and mechanical strength of cement, N. Carbon Mater. vol. 30 (4) (2015) 349–356.
  6. https://canacem.org.mx/site/wp-content/uploads/2023/03/Hoja-de-Ruta-Mexico-FICEM.pdf.
  7. https://cdn.ymaws.com/www.thegraphenecouncil.org/resource/resmgr/case_studies/first_graphene__-_greening_c.pdf
  8. https://www.graphene-info.com

Innovación con Grafeno

Innovación con Grafeno:

Hacia una Industria del Cemento Más Sostenible y Eficiente

Parte 1

El dióxido de carbono (CO2) es un gas incoloro, inodoro y no tóxico presente de manera natural en la atmósfera. En condiciones normales debería mantenerse en equilibrio para retener el calor que el ser humano necesita para sobrevivir y sin que se convierta en un gas de efecto invernadero. Sin embargo, la sobrepoblación, industrialización y explotación del medio ambiente se han encargado de romper dicho equilibrio logrando que los niveles de CO2 sean cada vez más difíciles de controlar y, por lo tanto, que aumenten, se concentren, absorban la radiación y eviten que el calor escape, repercutiendo en el calentamiento global.  

De acuerdo con las estadísticas, la producción de cemento y la industria de los combustibles fósiles (carbón, petróleo y gas natural), son los responsables de liberar alrededor del 90% del CO2 y probablemente el 70% de los gases de efecto invernadero. Aunque obviamente otras industrias también contribuyen como la agricultura, la moda y el transporte.  

“La sustentabilidad de nuestra civilización depende de si podemos suministrar fuentes de energía, alimentos y productos químicos a la creciente población sin comprometer la salud de nuestro planeta a largo plazo”. Doria- Serrano, 2009.

En lo que respecta al cemento, el principal compuesto del concreto, los reportes mencionan que por sí solo aporta entre el 7 y 8% de las emisiones globales de CO2. Como referencia tenemos que, para producir una tonelada del Clinker, que a su vez es el principal componente del cemento, se liberan alrededor de ~0,86 toneladas de CO2, de las cuales, alrededor del 60% provienen de la transformación de la piedra caliza en óxido de calcio o cal a una temperatura promedio de 1450 °C, proceso también conocido como quemado del cemento o clinkerización. Mientras que el otro 40% se atribuye a la quema del combustible fósil (carbón) necesario para la calcinación de la piedra caliza y formación del Clinker.   

“En 2021 las emisiones de carbono generadas por la producción de cemento alcanzaron casi 2, 900 millones de toneladas de dióxido de carbono. Mientras que en 2002 se registraron 1,400 millones de toneladas.” The Global Carbon Project.

Por lo tanto, y en vías de alcanzar el objetivo del cero neto de emisiones para el 2050 que exige el acuerdo de París, la industria del cemento se ha visto obligada a tomar medidas que reduzcan su impacto a partir del uso de combustibles alternativos (biomasa, llantas, residuos sólidos urbanos); de mejorar la eficiencia energética reduciendo la temperatura de clinkerización a través de fundentes y mineralizadores (como CaF2, BaO, SnO2, P2O5, Na2O, NiO, ZnO, etc.) o de la renovación de hornos; de modificar la química del cemento con materiales suplementarios para reducir el consumo de Clinker o para capturar CO22 y, recientemente con el uso de grafeno para mejorar la calidad del cemento y del concreto.  

“Se espera que para el 2050 el consumo mundial de concreto de 25 mil millones al año aumente entre un 12 y un 23 %”

De acuerdo con la Cámara Nacional del Cemento (CANACEM), la gran mayoría de los proyectos registrados en Latinoamérica trabajan en la sustitución de combustibles fósiles por combustibles alternativos; México es el único país que registra una mayor producción de cementos adicionados para reducir el contenido de Clinker.

El Grafeno es un nanomaterial que consiste en láminas atómicas de carbono separadas del grafito, con propiedades mecánicas, eléctricas, térmicas, de barrera, etc. superiores a otros materiales base carbono, que le han permitido incursionar en un sinfín de aplicaciones e industrias, incluidas la de la construcción. De acuerdo con estimaciones del Graphene flagship, se espera que el uso de grafeno en la construcción reduzca las emisiones de CO2 en un 30%.

“La producción de 1 kg de grafeno produce 0,17 kg de CO2, en comparación con los 0,86 kg de CO2 del cemento Portland, reforzando las ventajas medioambientales del nanomaterial”.

Desde el aislamiento del Grafeno en 2004 y el posterior reconocimiento con el Premio Nobel de Física 2010 a sus descubridores, comenzó una carrera internacional para estudiar, comprender y obtener el nanomaterial en cantidades suficientes que pudiesen ser utilizadas en aplicaciones a gran escala a un costo asequible. En el ramo de la construcción no fue hasta el año 2018 en que las investigaciones e inversiones manifestaron sus primeros frutos en distintas partes del mundo, por ejemplo:

2018- Graphenemex® lanzó al mercado Nanocreto® el primer aditivo para concreto con óxido de grafeno en el mundo (México).

2019- Graphenenano desarrolló Smart aditives, aditivos con grafeno para concreto (España).

2019- GrapheneCA presentó su línea de productos OG concrete admix para la industria del concreto (E.U.A).

2021- Científicos de la Universidad de Manchester desarrollaron el aditivo para concreto Concretene (Reino Unido).

2022- Energeia Fusion- Graphenemex® lanzó al mercado la línea Graphenergy construcción, una versión mejorada de Nanocreto® (México).

2022- Versarien presentó ante el mercado CementeneTM la primera construcción por impresión 3D en el mundo con una mezcla reforzada con grafeno (Reino Unido).

Basquiroto de Souza y colaboradores en su artículo “Graphene opens pathways to a carbon-neutral cement industry” publicado en 2022 en la revista Science Bulletin resumieron las áreas de oportunidad que el grafeno tiene en pro de la sustentabilidad de los materiales de construcción:

1. Reducción del cemento portland gracias a las importantes mejoras en resistencia a la compresión y módulo elástico del concreto.

2. Aumentar el aprovechamiento de subproductos o materiales reciclados en el concreto para reducir las emisiones de gases de efecto invernadero hasta en un 7%, así como la reducción de un 2% en cuanto a consumo energético durante la fabricación de mortero reforzado con óxido de grafeno.

3. Reducción de costos de construcción debido a mejora en la resistencia o a la mayor incorporación de subproductos o materiales de desecho. De acuerdo con un análisis de costos se concluyó si bien el uso de óxido de grafeno puede incrementar ligeramente el costo del concreto, el índice de economía (resistencia a la compresión/costo por m3) de las mezclas puede aumentar hasta un 40 %.

4. Reducción en costos de mantenimiento. Al mejorar la calidad de las estructuras de concreto se infieren disminuciones de las emisiones de CO2 a través de una reducción en la cantidad de materiales de construcción y energía asociados con el mantenimiento.

5. Construcciones energéticamente eficientes: las propiedades térmicas del grafeno pueden aplicarse también a las construcciones para lograr ahorros energéticos disminuyendo el uso de sistemas de refrigeración/ calefacción.

Para Energeia- Graphenemex® la empresa líder en América Latina en el diseño de aplicaciones con materiales grafénicos es un orgullo formar parte de la línea del tiempo del grafeno para una construcción sostenible. 

Redacción: EF/DHS

Referencias

  1. Ige, O.E.; Olanrewaju, O.A.; Duffy, K.J.; Collins, O.C. Environmental Impact Analysis of Portland Cement (CEM1) Using the Midpoint Method. Energies 2022, 15, 2708.
  2. International Energy Agency, World Business Council for Sustainable Development. Technology roadmap – low-carbon transition in the cement industry. April 2018
  3. Felipe Basquiroto de Souza, Xupei Yao, Wenchao Gao, Wenhui Duan, Graphene opens pathways to a carbon-neutral cement industry, Science Bulletin, 2022, 67, 1, 2022, 5
  4. Papanikolaou I, Arena N, Al-Tabbaa A. Graphene nanoplatelet reinforced concrete for self-sensing structures– a lifecycle assessment perspective. Journal of Cleaner Production, 2019, 240: 118202
  5. Devi S, Khan R. Effect of graphene oxide on mechanical and durability performance of concrete. Journal of Building Engineering, 2020, 27: 101007
  6. Doria- Serrano. Química verde: un nuevo enfoque para el cuidado del medio ambiente. Educación química. 2009. UNAM.
  7. https://theplanetapp.com/que-son-las-emisiones-de-co2/
  8. https://graphene-flagship.eu/materials/news/materials-of-the-future-graphene-and-concrete/#:~:text=Graphene%2Denhanced%20concrete%20is%202.5,CO2%20emissions%20by%2030%25.
  9. https://www.versarien.com/files/5716/3050/8952/White_Paper_-_Graphene_for_the_construction_sector_-_final_version.pdf

Innovación en Recubrimientos Antiadherentes

Innovación en Recubrimientos Antiadherentes:

Integración de Materiales Grafénicos para Mejores Propiedades y Desempeño

Actualmente, cuando se habla de un recubrimiento antiadherente, se refiere a un recubrimiento que impide, en cierto grado la adhesión de sustancias ya sean en estado sólido o líquido sobre la superficie en el que está aplicado. La capacidad antiadherente de estos recubrimientos, esta basado en que presentan tasas muy bajas de tensión superficial, también llamada energía superficial y es representada por “γ”.

Para que los recubrimientos sean considerados como antiadherentes deben tener una energía superficial, γ menor de 26 mJ/m2 y ángulos de contacto con el agua superior a 90°. Una superficie en la cual la gota forma un ángulo de contacto mayor que 90°, es una superficie hidrofóbica. Esta condición implica que la mojabilidad, adhesividad y la energía superficial son bajas (Ver Fig 1.). En cambio, si la superficie es hidrofílica, se observará un ángulo de contacto menor a 90° y la mojabilidad, adhesividad como la energía superficial serán altas.

Fig.1 Esquema representando los ángulos de contacto de una superficie hidrofóbica e hidrofílica.

A nivel industrial existe múltiples recubrimientos antiadherentes a base de fluoropolímeros. Los usos y aplicaciones que abarca el uso de fluoropolímeros en los recubrimientos cubre una extensa gama de productos. El efecto de antiadherencia y fácil desmoldeo, permite su empleo en diversas industrias, como la textil, química, automotriz y la industria alimenticia, para la elaboración de utensilios, moldes, herramientas y equipos que requieran ser aislados de productos químicos o alimentos.

La mayoría de los recubrimientos antiadherentes poseen alta resistencia térmica, sin embargo, no poseen gran resistencia a la abrasión. Sin embargo, el tema de uso de fluoropolimeros en utensilios para la cocina, pone en duda que este tipo de material no sea de riesgo para la salud humana, dado que puede haber desprendimiento de sustancias dañinas durante su uso.

En años recientes, Energeia – Graphenemex®, una empresa mexicana líder en la producción de materiales grafeno, ha implementado el uso de estos nanomateriales a base de carbono. Los materiales grafénicos, como el óxido de grafeno y el grafeno, permiten mejorar las propiedades en los recubrimientos, como, por ejemplo, recubrimientos anticorrosivos, antibacterianos, con mayor resistencia a la abrasión y alta resistencia a la radiación UV.

Durante estas evaluaciones de propiedades, se observó, que los materiales grafénicos, también puede ser utilizados como nuevos aditivos para el desarrollo de recubrimientos antiadherentes. La incorporación de los materiales grafénicos a recubrimientos tipo epoxi, permitió mejora a la adherencia a los sustratos, sin embargo, también se observó que el acabado de estos recubrimientos era mas liso y brilloso. Al exponer la aplicación de estos recubrimientos, en un medio corrosivo, se observó que el recubrimiento mostró un comportamiento hidrofóbico, que mantenía mas limpia su superficie, en comparación al recubrimiento control (sin material grafenico) que poco a poco perdía su brillo y se podía observar la mojabilidad y la depositación de contaminantes sobre la superficie del recubrimiento (Ver Figura 2).

Fig.2 Efecto antiadherentes de recubrimientos con material grafénico.

Por otro lado, se evaluó el efecto antiadherente de un recubrimiento ecológico con y sin material grafenico. Este recubrimiento está elaborado a base de cal, mucilago de nopal y pigmentos minerales. Es bien conocido, que los materiales a base de cal y carbonatos, tiene absorber muy fácil la humedad, por lo que se estudió el efecto del material grafenico en la pintura base cal. Entre los resultados encontrados, es que la pintura mostro tener efecto antimicrobiano, mayor resistencia a la radiación UV y mayor impermeabilidad (efecto antiadherente).

En la Figura 3, se puede apreciar la respuesta de un recubrimiento base cal con y sin material grafenico, cuando es mojado por agua. Se puede apreciar que los recubrimientos con materiales grafénicos; Grafeno y óxido de grafeno (GO) a diferentes concentraciones, hay muy poca deformación en la gota pues su energía interna es superior a la energía superficial, mostrando un comportamiento hidrofóbico (repelencia al agua). En caso de el recubrimiento control (sin material grafenico), se puede observar que tiene muy poca capacidad antiadherente, es más fácil que absorba agua por la presencia de una elevada energía superficial. Ahora la gota se expande sobre la superficie inmediatamente que la gota de agua cae sobre la superficie, mostrando un comportamiento altamente hidrofílico. Estos resultados mostraron, que los materiales grafénicos, modificaron la naturaleza del recubrimiento, es decir, a nivel superficial modificaron la energía superficial de los recubrimientos.

Figura 3. Comportamiento de mojabilidad de un recubrimiento base cal, con y sin materiales grafénicos.

Actualmente Energeia – Graphenemex®, empresa mexicana lider en América Latina en investigación y producción de materiales grafénicos para el desarrollo de aplicaciones a nivel industrial, tiene a la venta diferentes tipos de materiales grafénicos, para su uso en el desarrollo y producción de recubrimientos anticorrosivos, antibacterianos y con mejores propiedades antiadherentes,

Referencias

  1. Tong, Yao &Song, Mo. (2013). Graphene based materials and their composites as coatings.
  2. Zhen, Z. & Zhu, H. Graphene: Fabrication, Characterizations, Properties and Applications. Graphene (Academic Press, 2018).
  3. Sachin Sharma Ashok Kumar, Shahid Bashir, K. Ramesh, S. Ramesh, Progress in Organic Coatings, 154, (2021)

Óxido de Grafeno y su versatilidad en el desarrollo de aplicaciones

Óxido de Grafeno y su versatilidad en el desarrollo de aplicaciones:

De Tecnologías de Detección a Soluciones Ambientales

El grafeno y sus derivados como el óxido de grafeno (GO) y óxido de grafeno reducido (rGO) son nanomateriales de carbono bidimensionales y en forma de lámina con una amplia gama de oportunidades para numerosas aplicaciones debido a su delgadez, transparencia, conductividad, flexibilidad, estabilidad química, impermeabilidad y resistencia mecánica. En el caso del GO y rGO, además de su gran superficie de área con zonas hidrófilas e hidrófobas propias del grafeno, permiten la adsorción de moléculas aromáticas orgánicas, iones y polímeros mediante apilamiento π-π, puentes de hidrógeno e interacciones electrostáticas; propiedades que los convirtieron en materiales adecuados para la construcción de sensores o de plataformas biocatalíticas y fotocatalíticas. De acuerdo con diversos reportes, la relación superficie-volumen de los materiales de grafeno mejora la carga superficial de las moléculas deseadas, mientras que su excelente conductividad eléctrica, sobre todo a temperatura ambiente, favorece el paso de los electrones hacia la superficie de los electrodos para análisis o fotocatálisis.

Por otro lado, las láminas de grafeno no son propiamente planas, es decir, presentan ondulaciones que se forman como resultado de la unión entre sus átomos de carbono o de fluctuaciones térmicas que, finalmente, pueden inducir campos magnéticos y cambiar sus propiedades electrónicas para el diseño de sensores, biosensores o dispositivos electrónicos en general. Es así como en el transcurso de más de diez años de investigación y de la exploración de su maravillosa multifuncionalidad, el estudio del grafeno ha trascendido para el desarrollo de dispositivos altamente sensibles para monitorear, por ejemplo, la presencia de gases nocivos, moléculas o proteínas de relevancia médica e incluso para la descontaminación del agua.

Sistemas de detección

Los metamateriales son un tipo de compuestos con la capacidad de producir respuestas electromagnéticas útiles para el diseño de sensores o dispositivos de detección no destructiva. Por lo general, este tipo de sensores están conformados por un material aislante y un material conductor, sensibles al índice de refracción de la capa superior del analito. En presencia del grafeno se ha observado que dicha interacción (sensor- analito) se ve mejorada por cambios en la intensidad de la resonancia y, por lo tanto, se pueden lograr cambios de amplitud que favorecen aún más la sensibilidad de detección.

En un estudio realizado en 2023 por la Escuela de Ingeniería Electrónica y de la Información de la Universidad de Ciencia y Tecnología de Zhejiang, Hangzhou, China, se diseñó un sensor compuesto por una película de poliimida (PI) como capa aislante, una estructura de aluminio como capa conductora y una monocapa de grafeno como interfaz de detección. Los resultados de la simulación indicaron que el grafeno puede modular todo el campo eléctrico y producir un cambio de amplitud que incrementa los límites detección de manera importante.

En otro estudio realizado en el Laboratorio de materiales nanoestructurados del Instituto de Física de la UASLP., se utilizó óxido de grafeno funcionalizado con nanopartículas de oro como plataforma de biodetección por SERS (Surface Enhanced Raman spectroscopy), una importante técnica para la detección biológica gracias a su alta sensibilidad, bajos requerimientos de muestra, relativamente bajo costo y detección en tiempo real. Para la investigación se utilizó cristal violeta como molécula estándar y flavin adenin dinucleótido como coenzima experimental por su participación en numerosos procesos redox de reacciones metabólicas y transporte biológico de electrones. Los resultados arrojaron que los híbridos de óxido de grafeno con nanopartículas de oro mejoran sustancialmente las señales SERS en comparación con las nanopartículas individuales. Además, los resultados son consistentes con otras investigaciones sobre la identificación de una importante mejora para la estabilización de moléculas y reducción de la fluorescencia durante las mediciones, la cual suele ser una gran desventaja de este tipo de técnicas, respaldando su potencial como herramienta diagnóstica o de seguimiento.

Eliminación de gases tóxicos

Los avances en la nanoingeniería permiten que las láminas de grafeno y GO puedan manipularse para la detección y separación de ciertos gases. De acuerdo con los resultados de un estudio realizado por el Departamento de Ingeniería Energética de la Universidad de Hanyang, Seúl, Corea, la difusión selectiva se puede lograr controlando los canales y poros del flujo de gas mediante diferentes métodos de apilamiento, logrando demostrar que los grupos funcionales del GO proveen un comportamiento de adsorción único hacia el CO2. .

Conversión de CO2

Las propiedades fotocatalíticas del GO también pueden ser aprovechadas para la conversión de CO2 en hidrocarburos como el metanol para la captación de la energía solar y la reducción de CO2. En 2018, dentro del laboratorio de Tecnología Avanzada para Síntesis y Procesamiento de Materiales, de la Universidad Tecnológica de Wuhan, China, se utilizaron nanopartículas de cromato de plata (Ag2CrO4) como fotosensibilizador y GO como co- catalizador para la reducción fotocatalítica de CO2 en metanol y metano. El estudio concluyó que esta sinergia entre nanopartículas puede mejorar hasta 2,3 veces la actividad de conversión bajo irradiación solar gracias a una mejor absorción de luz, mayor adsorción de CO2 y mejor eficiencia en la separación de carga.

Descontaminación de agua

Las tecnologías del agua tienen diversas áreas de oportunidad, particularmente en el mejoramiento de los sistemas de filtración o de membranas. A este respecto se ha encontrado que el uso de nanoestructuras híbridas de grafeno, por ejemplo, con rutenio o magnetita puede permitir la eliminación de microorganismos y materia orgánica presentes en el agua. No obstante, se continúa el avance de las investigaciones para el perfeccionamiento de las metodologías basadas en grafeno para la eliminación y reducción de iones metálicos como el zinc, cobre, plomo, cadmio, cobalto, entre otros. 

En Energeia- Graphenemex® reconocemos y admiramos los avances que los centros de investigación han logrado en distintas áreas del conocimiento, partiendo de la ciencia básica hasta resultados en ciencia aplicada. Tenemos la firme convicción de que en el corto o mediano plazo este tipo de tecnologías las veremos materializadas en productos reales, útiles para la sociedad y el medio ambiente.

Redacción: EF/ DHS   

Referencias

  1. A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene, Nat. Mater. 6 (2007) 858;
  2. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat. Nanotechnol. 4 (2009) 562;
  3. G. Yildiz, M. Bolton-Warberg and F. Awaja. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomaterialia 131 (2021) 62;
  4. Lang, T.; Xiao, M.; Cen,W. Graphene-Based Metamaterial Sensor for Pesticide Trace Detection. Biosensors 2023, 13, 560;
  5. D. Hernández- Sánchez, E. G. Villabona Leal, I. Saucedo-Orozco, V. Bracamonte, E. Pérez, C. Bittencourt and M. Quintana, Phys. Chem. Chem. Phys., 2017;
  6. Kim, H.W.; Yoon, H.W.; Yoon, S.-M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 2013, 342, 91;
  7. Kim, D.; Kim, D.W.; Lim, H.-K.; Jeon, J.; Kim, H.; Jung, H.-T.; Lee, H. Intercalation of gas molecules in graphene oxide interlayer: The role of water. J. Phys. Chem. C 2014, 118, 11142;
  8. Xu, D.; Cheng, B.; Wang, W.; Jiang, C.; Yu, J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 2018, 231, 368;
  9. Jiˇríˇcková, A.; Jankovský, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920;
  10. M. Quintana, E. Vazquez & M. Prato, “Organic Functionalization of Graphene in Dispersions”, Acc. Chem. Res., vol. 46, n.o 1, pp. 138-148, 2013. DOI: 10.1021/ar300138e; 11. Roberto Urcuyo1,2,3, Diego González-Flores1,3, Karla Cordero-Solano, Rev. Colomb. Quim., vol. 50, no. 1, pp. 51-85, 2021;
  11. B. Xue, M. Qin, J. Wu et al., “Electroresponsive Supramolecular Graphene Oxide Hydrogels for Active Bacteria Adsorption and Removal”, ACS Appl. Mater. Interfaces, 8, 24, 15120;
  12. C. Wang, C. Feng, Y. Gao, X. Ma, Q. Wu & Z. Wang, “Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution”, Chem. Eng. J.,173, 1, 92.

Avanzando en la Durabilidad del Asfalto

Avanzando en la Durabilidad del Asfalto:

Aprovechando el Potencial del Grafeno para Carreteras Sostenibles

La mayor parte de la infraestructura vial en el mundo está conformada por pavimento compuesto por un sistema complejo de asfalto, agregados y aglutinantes que interactúan en una interfaz que mantiene su resistencia y estabilidad estructural. De acuerdo con el Asphalt Institute, anualmente se producen 87 millones de toneladas de asfalto en todo el mundo, de las cuales, alrededor del 85% se utiliza en la industria de pavimentación que, si bien ofrece una gran capacidad de carga y durabilidad, es inevitable que el asfalto se dañe por la exposición constante a radiación, temperatura, humedad y tráfico.

Por otro lado, el deterioro del asfalto no solo afecta a una infraestructura de transporte básica para el desarrollo socioeconómico de la población, sino que también involucra impactos ambientales en términos de agotamiento de recursos y altas emisiones de CO2 causadas por las obras viales. Estos factores se suman a las razones para la constante búsqueda de tecnologías de modificación que aumenten la durabilidad y mejoren las propiedades mecánicas de los pavimentos mediante el uso de fibras, caucho; aditivos como elastómeros termoplásticos, resinas plásticas y sintéticas, polvo de hierro, cal hidratada o desechos de vidrio. Sin embargo, en algunos casos, la aplicación de estos productos pueden presentar problemas prácticos como condiciones especiales de preparación, poca estabilidad de almacenamiento, dificultad para mezclar en construcción y complejidad para compatibilizar dichos componentes con el sistema asfáltico.

Afortunadamente, las nanoestructuras de carbono como el grafeno y óxido de grafeno (GO) vuelven a aparecer en escena como propuestas de soluciones para estas problemáticas a partir de interesantes aportaciones al asfalto en cuanto a rigidez, antienvejecimiento, resistencia a la deformación y penetración; reducción en la aparición de surcos, mejor consistencia y capacidad de transferencia de calor; resistencia al deslizamiento e incluso, reducción en el esfuerzo necesario para la compactación durante su preparación.

Además, entre las ventajas del grafeno está que puede mezclarse con otras tecnologías modificadoras de asfalto como el polietileno de baja densidad (LDPE), polietileno de alta densidad (HDPE), tereftalato de polietileno (PET), poliestireno (PS), caucho granulado, escoria de horno, resinas epóxicas y, sobre todo, con el estireno-butadieno-estireno (SBS), el cual es uno de los polímeros más aceptados en la industrial del asfalto y con el cual, el óxido de grafeno (GO) gracias a su contenido de oxígeno promueve la absorción de aromáticos y saturados del SBS con una importante mejora en la respuesta de temperatura, adherencia y rigidez en el ligante.

Algunos de los métodos identificados que prometen simplificar la incorporación del grafeno en las mezclas asfálticas son:  

  1. Método de adición directa: el grafeno es incorporado al ligante asfáltico previamente fundido.  
  2. Método de adición indirecta: el grafeno y el aglutinante asfáltico se disuelven simultáneamente en una solución media para posteriormente formar una solución uniforme.
  3. Método de adición auxiliar: el grafeno se modifica químicamente con grupos funcionales o se adiciona en conjunto con otros agentes modificadores para posteriormente fundirse en el aglutinante asfáltico.

Aunque hasta el momento son pocas las empresas que han explorado al grafeno como aditivo mejorador del asfalto, la amplia investigación realizada a lo largo de la última década está ayudando a sentar las bases para comprender y proyectar el potencial de esta tecnología en beneficio de la industria de la pavimentación. Incluso, el pasado mes de febrero de 2024, la revista Infraestructures publicó los resultados del proyecto ECOPAVE fundado por la Unión Europea, el cual consistió en una prueba en campo con 5 años de duración realizada a lo largo de 1 km de tráfico pesado al sur de Roma, Italia. Para el estudio se colocaron cuatro secciones de pavimento asfáltico con y sin adiciones de polímeros modificados con grafeno. Transcurridos los 5 años de evaluación los investigadores reafirmaron el potencial del asfalto modificado con el polímero de grafeno como tecnología innovadora y factible para la pavimentación de carreteras de alto tráfico, gracias a que demostró valores de rigidez más altos a diferentes temperaturas, mejor comportamiento a la fatiga y mayor resistencia a la deformación que, en conjunto prometen una mayor vida útil, con una reducción importante en los gastos de mantenimiento.

En Energeia- Graphenemex® como líderes en el desarrollo de aplicaciones con grafeno tenemos la firme convicción de que, aunque aún hay trabajo por realizar, falta muy poco para poder disfrutar de los beneficios económicos y ambientales que esta maravillosa tecnología puede aportar no solo a nuestras calles y carreteras, sino a la sociedad.

Redacción: EF/DHS

Referencias

  1. Mechanism and Performance of Graphene Modified Asphalt: An Experimental Approach Combined with Molecular Dynamic Simulations. Case Studies in Construction Materials. 2023, 18, e01749;
  2. Properties and Characterization Techniques of Graphene Modified Asphalt Binders. Nanomaterials 2023, 13, 955;
  3. Analysis on the road performance of graphene composite rubber asphalt and its mixture. Case Studies in Construction Materials. 2022, 17, e01664;
  4. A complete study on an asphalt concrete modified with Graphene and recycled hard-plastics: A case study. Case Studies in Construction Materials. 2022, 17, e01437;
  5. Effect of Graphene Oxide on Aging Properties of polyurethane-SBS Modified Asphalt and Asphalt Mixture. Polymers 2022, 14, 3496;
  6. Mechanical Characteristics of Graphene Nanoplatelets-Modified Asphalt Mixes: A Comparison with Polymer- and Not-Modified Asphalt Mixes. Materials 2021, 14, 2434;
  7. Impact of Graphene Oxide on Zero Shear Viscosity, Fatigue Life and Low-Temperature Properties of Asphalt Binder. Materials 2021, 14, 3073;
  8. Experimental Investigation into the Structural and Functional Performance of Graphene Nano-Platelet (GNP)-Doped Asphalt. Appl. Sci. 2019, 9, 686;
  9. Modified Asphalt with Graphene-Enhanced Polymeric Compound: A Case Study. Infrastructures 2024, 9, 39.

Optimización de Compuestos de Fibra de Vidrio y de Carbono

Optimización de Compuestos de Fibra de Vidrio y de Carbono:

Mejorando Propiedades con Nanopartículas de Grafeno

Las fibras de vidrio y de carbono gracias a sus excelentes propiedades son ampliamente utilizados en industrias como la aeroespacial, marítima, automotriz, deportiva, construcción e incluso para la fabricación de componentes fundamentales de energías renovables como la eólica. Sin embargo, pese a su excelente desempeño, son compuestos que suelen presentar un fenómeno conocido como “delaminación interlaminar” derivada de una débil interacción interfacial fibra/resina que puede comprometer la vida útil y seguridad del producto debido a su importante participación en la transferencia de tensión entre ambos elementos. Al ser esta interacción clave para el éxito a largo plazo de las estructuras compuestas, se han explorado diversas alternativas de mejora como la fijación en Z, cosido y trenzado; aumento del área superficial y la reactividad de las fibras por medio de modificaciones superficiales como el tratamiento con plasma, modificación térmica o funcionalización química que, evidentemente son procesos complejos, costosos y no siempre eficientes que, además, tienden a reducir el rendimiento del laminado en el plano.

“Como estrategia adicional y de relativamente reciente aparición, se propuso la incorporación de nanopartículas al material compuesto por fibras buscando favorecer la interacción con la matriz en la que se embeben”.

El Grafeno, el nanomaterial conocido como la piedra angular de la familia del carbono y que desde su aislamiento ha resaltado calificativos como “el material del futuro” o “el material milagro”, es un atractivo candidato como nano refuerzo de incontables compuestos poliméricos gracias a su estructura plana grafitizada única, que da lugar a mejores propiedades mecánicas, térmicas, entre otras que, a diferencia de otras nanopartículas como los nanotubos de carbono (CNT, por sus siglas en inglés), no suele aumentar de manera relevante la viscosidad de las resinas y por lo tanto, permite incorporar concentraciones más altas favoreciendo la tan mencionada interacción fibra/matriz.

Las investigaciones sobre los efectos del grafeno para el diseño de materiales híbridos a base de fibras (vidrio/carbono) embebidas en una matriz polimérica comúnmente de naturaleza epóxica, han destacado mayor rigidez de los compuestos, mejoras en resistencia a la fractura, mejor lubricación e incluso mejor conductividad eléctrica. Esto se debe a que su gran superficie de área permite una transmisión de carga efectiva desde la matriz blanda del polímero a las láminas de grafeno que son relativamente más rígidas, lo cual es un requisito esencial para mejorar el rendimiento mecánico, ratificado por una mayor resistencia al corte interlaminar del material, mayor resistencia a la tracción y al impacto. Además, durante la manipulación y corte de las estructuras híbridas de fibra, la presencia del grafeno contribuye a generar menos calor durante el fresado, conduce a temperaturas de corte más bajas y menor rugosidad en la superficie; asimismo, otro de los beneficios es que el grafeno produce mayor efecto endurecedor y mejor resistencia a la flexión del material expuesto a distintas temperaturas con registros desde los 40 °C hasta los 200 °C.

En Energeia- Grapenemex la empresa líder en América latina en la producción de materiales grafénicos y en el desarrollo de aplicaciones, estamos convencidos de que las extraordinarias capacidades del grafeno como nanorefuerzo de incontables matrices tridimensionales continuarán alentando a investigadores y colegas industriales a explorar sus beneficios para la fabricación de componentes estructurales más resistentes y ligeros de aeronaves como fuselaje y alas; autopartes y carrocerías aerodinámicas de automóviles; aerogeneradores, equipos deportivos, materiales de construcción, entre otros. 

La imagen inferior evidencia la buena interacción fibra/matriz promovida por la presencia del grafeno 5.

Redacción: EF/DH

Referencias:

  1. Effect of dispersion of alumina nanoparticles and graphene nanoplatelets on microstructural and mechanical characteristics of hybrid carbon/glass fibers reinforced polymer composite. Journal of material research and technology. 2021, 14, 2624;
  2. Experimental investigation on the properties of glass fiber-reinforced polymer composites containing Graphene. AIP Conf. Proc. 2022, 2405, 050009;
  3. Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content. Composites part A: Applied science and manufacturing. 2017, 95, 40;
  4. Preparation and Mechanical Properties of Graphene/Carbon Fiber-Reinforced Hierarchical Polymer Composites. J. compos sci. 2019, 3, 30;
  5. Improving fiber/matrix interfacial strength through graphene and graphene-oxide nano platelets. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 139, 012004;
  6. Effect of Graphene on Machinability of Glass Fiber Reinforced Polymer (GFRP). J. Manuf. Mater. Process. 2019, 3, 78;
  7. Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J Mater Sci. 2016, 51, 3337.