Innovaciones en Tecnologías del Agua

Innovaciones en Tecnologías del Agua:

El Impacto del Grafeno

Hasta junio de 2024 el Instituto Nacional de Estadística y Geografía (INEGI) registró que, alrededor del 50% del territorio mexicano se encontraba en sequía severa, 30% en sequía extrema y 11% en sequía excepcional, habiendo tenido en consecuencia repercusiones importantes no solo en el abastecimiento de agua potable, siendo que en México solo el 52.3% de la población cuenta con dicho servicio, sino también afectaciones para el desarrollo de numerosas actividades económicas, como el sector agrícola y ganadero.

Pero la crisis hídrica no es un problema nacional, de acuerdo con la OMS/UNICEF más de 2000 millones de personas en todo el mundo carecen de agua potable por ello, dichos organismos definieron objetivos para el desarrollo sostenible hacia el 2030, en vías de garantizar la disponibilidad del agua y para cuyo cumplimiento es crítico mejorar la educación en materia de higiene; la protección y restablecimiento de los ecosistemas; el uso eficiente los recursos hídricos; la inversión en infraestructuras e instalaciones de saneamiento, así como fomentar el uso de nuevas tecnologías del agua, por ejemplo, para sistemas de riego, recolección de agua de lluvia y métodos para su tratamiento y reutilización.

Dentro de las nuevas tecnologías se encuentra la tecnología nano, misma que ha sido revolucionada desde hace 20 años por el aislamiento del Grafeno, un nanomaterial multifuncional base carbono perteneciente a la familia del diamante y del grafito, sobre el cual se han desarrollado numerosas investigaciones para evaluar sus efectos en las propiedades de los materiales utilizados en las tecnologías del agua, p.ej. membranas de filtración, medios floculantes, entre otros. El interés despertado para el estudio del grafeno en dichas aplicaciones resulta de sus extraordinarias características fisicoquímicas mismas que pueden ser controladas y compartidas con otros materiales tridimensionales.  Desde el inicio de su estudio como nanorelleno de matrices principalmente poliméricas se identificaron interesantes mejoras mecánicas, antiadherentes, antifricción, antimicrobianas y filtrantes que le permitieron incrementar su tiempo de vida, reducir las incrustaciones principalmente de materia orgánica sobre su superficie y con ello mantener constante el flujo del agua y, por lo tanto, la eficiencia de filtración.

Por ejemplo, investigadores del Instituto de Tecnología de Madrás y la Universidad de Tel Aviv en Israel desarrollaron con éxito un aerogel de sílice con óxido de grafeno para la descontaminación de aguas residuales, mientras que científicos de la Universidad Palacký de Olomouc, República Checa, pertenecientes al proyecto 2D-CHEM financiado por el Consejo Europeo de Investigación del Graphene flagship, diseñaron un grafeno ácido sintetizado a partir del fluorografeno con la facultad de remover metales pesados como el plomo y cadmio, así como metales nobles como el paladio, galio o indio.

Cabe destacar que los atractivos resultados de las investigaciones sobre el grafeno en las tecnologías del agua finalmente salieron de los laboratorios para llegar al mercado. Las empresas que hasta el momento han logrado explotar sus beneficios son la empresa australiana CLEAN TEQ WATER experta en el tratamiento de agua, con presencia en Melbourne, Beijing, Tianjin, y África que, a través de su filial NematiQ desarrolló exitosamente membranas de nanofiltración con grafeno más duraderas y capaces de reducir el consumo de energía; recientemente la compañía obtuvo la certificación WaterMark como producto seguro para la filtración de agua. Por su parte, la empresa británica EVOVE antes conocida como G2O Water Technologies ya utiliza entre otras tecnologías, recubrimientos hidrófilos de óxido de grafeno para mejorar el rendimiento de las membranas cerámicas o poliméricas convencionales.

Finalmente, el trabajo conjunto entre científicos del Graphene flaship y los lideres europeos en la industria de la purificación de agua como Icon Lifesaver, Medica SpA y Polymem S.A, a través del proyecto GRAPHIL buscan posicionar un nuevo sistema de filtración a partir de membranas poliméricas de fibra hueca mezcladas con grafeno para la gestión segura de agua potable, principalmente para uso doméstico.

Es así como los avances del grafeno gradualmente han ido ganando terreno fuera de las fronteras académicas para contribuir a solucionar una de las problemáticas más importantes en el mundo. Energeia- Graphenemex® la empresa mexicana pionera en América Latina en la producción y desarrollo de aplicaciones con materiales grafénicos en colaboración con otras compañías y centros de investigación se suma a la búsqueda de estrategias para mejorar la disponibilidad y calidad del agua, esperando en el corto plazo tener nuevas aplicaciones con grafeno en el mercado.

Redacción: EF/DHS

El Futuro de las Baterías

El Futuro de las Baterías:

Grafeno como Solución Sostenible a la Crisis de Litio

En la última década, el aumento global en la demanda de baterías de iones de litio ha sido impulsado por la creciente popularidad de dispositivos electrónicos, desde dispositivos portátiles como tabletas, consolas y teléfonos celulares, hasta vehículos eléctricos. Según el Fondo Monetario Internacional, se prevé que para 2050 la demanda de baterías supere la oferta en un 40%, lo que plantea una potencial crisis para las industrias que dependen de ellas si no se implementan alternativas viables.

Las problemáticas de las baterías de iones de litio no se limitan solo al equilibrio oferta-demanda. El litio es un recurso finito cuya extracción y desecho tienen impactos negativos en el medio ambiente y la salud humana. Además, las baterías presentan riesgos de seguridad significativos, como inestabilidad, sobrecarga, sobrecalentamiento e incendios.

El grafeno, un nanomaterial bidimensional de carbono con estructura de lámina extremadamente delgada, transparente y resistente, ha captado la atención de los expertos en baterías. Su arquitectura única permite una alta conductividad eléctrica y estabilidad química, características esenciales para mejorar el rendimiento de baterías de iones de litio (LIB), litio-azufre (LSB) y litio-oxígeno (LOB).

Beneficios del grafeno en las baterías:

  1. Mayor capacidad de almacenamiento energético: El grafeno tiene una estructura con una extensa área superficial, lo que facilita una mayor cantidad de sitios de intercalación para los iones de litio. Esto se traduce en una mejora significativa en la capacidad de almacenamiento energético de las baterías.
  2. Mejora en la conductividad eléctrica: Los enlaces π-π del grafeno permiten un transporte eficiente de electrones entre los materiales activos de los electrodos y los colectores de corriente. Esto reduce la resistencia interna de las baterías y mejora su potencia de salida, lo que es crucial para aplicaciones que requieren altas tasas de carga y descarga.
  3. Estabilidad mejorada y mayor durabilidad: El grafeno promueve la estabilidad de los materiales de los electrodos al prevenir la degradación prematura durante los ciclos de carga y descarga. Esto no solo prolonga la vida útil de las baterías, sino que también asegura una mayor estabilidad cíclica, manteniendo un rendimiento constante a lo largo del tiempo.

Perspectivas futuras y alternativas:

A pesar del crecimiento continuo del mercado de baterías de iones de litio, sus riesgos ambientales y limitaciones técnicas están impulsando la investigación hacia alternativas más sostenibles y eficientes. Algunas de estas alternativas incluyen sistemas de baterías basados en sodio/azufre, quitina/zinc, silicio/carbono, y combinaciones de grafeno con otros materiales avanzados.

En Energeia-Graphenemex, nos enorgullece estar a la vanguardia de estas innovaciones, explorando cómo el grafeno y otros materiales nanotecnológicos pueden seguir transformando la industria de las baterías y contribuyendo a un futuro energético más limpio y sostenible.

Redacción: EF/ DHS

Referencias

  1. A. Ali, P.K. Shen, Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: fundamentals to applications, Carbon Energy 2 (2020) 99.
  2. A. Ali, P.K. Shen, Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting, Electrochem. Energy Rev. 3 (2020) 370;
  3. A. Ali, P.K. Shen, Recent advances in graphene-based platinum and Palladium electrocatalysts for the methanol oxidation reaction, J. Mater. Chem. 7 (2019) 22189–22217; 4. Moreno-Brieva, Fernando, & Merino-Moreno, Carlos. (2020). Scientific and Technological Links from Samsung On Lithium Batteries and Graphene. Journal of technology management & innovation, 15(4), 81
  4. Yu Yang, Renjie Wang, Zhaojie Shen, Quanqing Yu, Rui Xiong, Weixiang Shen, Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal  strategy for thermal runaway, Advances in Applied Energy, 11, 2023, 100146
  5. https://www.hibridosyelectricos.com/coches/grafeno-baterias-coches-electricos_69751_102.html
  6. https://rpp.pe/columnistas/fernandoortegasanmartin/grafeno-vs-litio-el-futuro-de-las-baterias-automotrices-noticia-1391824
  7. https://www.energymonitor.ai/tech/energy-storage/graphene-is-set-to-disrupt-the-ev-battery-market/
  8. https://www.eleconomista.com.mx/opinion/Datos-sobre-el-mercado-de-smartphones-en-Mexico-20240131-0117.html

El Grafeno como Motor de la Revolución Energética

El Grafeno como Motor de la Revolución Energética:

Avances en Eficiencia y Almacenamiento de Energía Renovable

En el ámbito actual, la preocupación por el medio ambiente y el cambio climático ha dejado de ser una moda para convertirse en una prioridad. Esto ha dado lugar a la creación de equipos multidisciplinarios a nivel global, enfocados en encontrar soluciones tecnológicas más sostenibles para los desafíos energéticos, como la generación y almacenamiento de energía, con el objetivo adicional de reducir al máximo las emisiones.

En este contexto, la gestión de la energía térmica mediante tecnologías pasivas, como la solar, ha adquirido una importancia significativa. Su aprovechamiento como una alternativa ecológica y energéticamente eficiente ha experimentado un crecimiento considerable, desde su aplicación en entornos domésticos hasta sistemas de generación eléctrica.

Sin embargo, la intermitencia natural de la energía solar debido a los ciclos diurnos y nocturnos plantea desafíos a largo plazo. Por esta razón, es necesario considerar tecnologías complementarias, como los materiales de cambio de fase (PCM por sus siglas en inglés). Estos materiales tienen la capacidad de absorber energía térmica del entorno para cambiar su estado, liberando esta energía almacenada para aplicaciones de calefacción o refrigeración en diversos sectores, incluyendo la construcción, dispositivos electrónicos y aplicaciones aeroespaciales, entre otros.

Dentro de los PCM más conocidos se encuentra la parafina, cuya capacidad de cambio de fase sólido-líquido le permite almacenar calor latente al absorber energía térmica hasta alcanzar su punto de fusión. Aunque las parafinas presentan ventajas como ser materiales seguros, confiables y económicos, así como tener una estabilidad aceptable para ciclos largos de cristalización-fusión, también enfrentan desafíos, como su baja conductividad térmica y su fuga en estado líquido.

Afortunadamente, los PCM, incluyendo la parafina, se benefician de los avances en nanotecnología, especialmente al ser modificados con nanopartículas como el Grafeno. La incorporación de Grafeno en PCM como la parafina mejora significativamente la conductividad térmica y la eficiencia energética, facilitando el almacenamiento y conversión de energía solar a térmica.

¿Qué hace tan especial al Grafeno?

El Grafeno gracias a sus excepcionales características fisicoquímicas es uno de los nanomateriales más prometedores como coadyuvante en la resolución de las problemáticas energéticas. A diferencia de otras nanoestructuras de carbono como el diamante, grafito, carbón activado, fullerenos o nanotubos, el Grafeno tiene mejores propiedades eléctricas y mecánicas, con la ventaja adicional de que se combina fácilmente con otros compuestos como los PCM para compartir sus características y mejorar su desempeño. Por ejemplo, comparado con los nanotubos, una de las nanoestructuras de carbono más conocidas y estudiadas, el Grafeno tiene una mayor movilidad de cargas (200.000 cm2 V 1 s 1 Vs. 150.000 cm2 V 1 s 1), mayor conductividad eléctrica (6,6 MS m -1 Vs. 0,35 MS m -1), y mayor transmitancia (97,0% Vs. 95,7%) que lo hacen sumamente atractivo para su uso en materia energética.

¿Cómo se relacionan el Grafeno con los PCM para el aprovechamiento de la energía solar?

Históricamente desde el punto de vista sostenible y como aplicación real, la arquitectura es uno de los claros ejemplos en el aprovechamiento de la energía solar. Partiendo en la antigüedad con la fabricación de paredes de adobe para atrapar el calor del día y liberarlo durante la noche, hasta la infraestructura moderna con el uso de calentadores o paneles solares hasta la implementación de muros Trombe como herramienta de calefacción pasiva. Por ejemplo, estos últimos constan de un sistema de materiales como el vidrio, madera, acero, aluminio, concreto y PCM como la parafina, dispuestos en configuraciones especiales que en conjunto permiten absorber el calor para conducirlo lentamente hacia la vivienda. A partir la identificación de las propiedades multifuncionales del Grafeno y de la exploración de sus beneficios en distintos sectores, pudo identificarse que su incorporación en la parafina utilizada para la fabricación de sistemas de calefacción pasiva puede mejorar la conductividad térmica o la fuerza impulsora hasta en un 164%, mostrando una evidente superioridad sobre las nanopartículas híbridas de alta eficiencia como el Cu-TiO2 o Al2O3-MWCNT, cuyos beneficios normales oscilan entre el 50 y 70%. Esto quiere decir que, en caso de lograr integrar estas tecnologías a los sistemas de calefacción pasiva además de mejorar el confort térmico durante todo el año también representaría ahorros energéticos importantes, además de reducir las emisiones de CO2.

Celdas solares

Otra conocida aplicación potencial de la nanotecnología en el sector energético, es el diseño de la cuarta generación de paneles solares, que incluye el uso de nanomateriales bidimensionales como el disulfuro de molibdeno (MoS2), Diseleniuro de wolframio (WSe2) y nuevamente, el Grafeno.

Entre las ventajas más representativas que el Grafeno ha demostrado sobre otros materiales está, además de su resistencia mecánica, su alta movilidad de cargas, gran transmitancia, ligereza, flexibilidad y estabilidad, que han logrado que en menos de 10 años su desempeño para el diseño de paneles solares haya tenido importantes avances al incrementar su eficiencia del 1.5% al 15%, casi comparable con la eficiencia de las celdas actuales que oscila entre el 20 y 22%. No obstante, y en vías de mejorar aún más estos porcentajes, los expertos en la materia continúan explorando metodologías a partir del dopaje del Grafeno con otras estructuras como el silicio, hexafluoruro de molibdeno, óxido de molibdeno, cloruro de tionilo, ácido trioxionítrico, cloruro de oro, boro, oxígeno, nitrógeno, fósforo o azufre, para reducir su resistencia y aprovechar mejor la energía de la luz solar.  

En Energeia – Graphenemex, la empresa líder en Latinoamérica en el diseño y desarrollo de aplicaciones con materiales grafénicos somos sensibles de los retos que, como cualquier tecnología emergente, el Grafeno enfrenta, y nos es grato formar parte del selecto grupo de investigadores e industriales que a nivel mundial busca beneficiar a la sociedad, a la economía y al medio ambiente con las bondades que estos maravillosos materiales pueden ofrecer.

Gracias a nuestro equipo multidisciplinario en muy poco tiempo hemos logrado vencer los obstáculos que han limitado la llegada de este material al mercado en aplicaciones reales,  comenzando con su producción a gran escala, con calidad controlada y a un costo asequible, así como con el desarrollo de nuevos productos con nanoingeniería grafénica sobre los cuales ha sido fundamental controlar su estabilidad y compatibilidad con los compuestos y procesos utilizados en cada aplicación o industria.

Probablemente el Grafeno como aliado de las energías renovables aún está en etapas incipientes y no propiamente por su manipulación, sino por la complejidad que este sector representa, sin embargo, no se deben desestimar los importantes avances logrados a lo largo de la última década, puesto que son las bases para las siguientes generaciones de equipos y/o tecnologías.

Redacción: EF/DHS

Referencias

  1. Jafaryar M, Sheikholeslami M. Simulation of melting paraffin with graphene nanoparticles within a solar thermal energy storage system. Sci Rep. 2023, 26;13(1):8604;
  2. R. Bharathiraja, T. Ramkumar, M. Selvakumar. Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications. J. Energy Storage, 73, Part C, 2023, 109216;
  3. Li-Wu Fan, Xin Fang, Xiao Wang, Yi Zeng, Yu-Qi Xiao, Zi-Tao Yu, Xu Xu, Ya-Cai Hu, Ke-Fa Cen, Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials, Applied Energy, 110, 2013, 163;
  4. Top Khac Le., et al., Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions. RSC Adv., 2023, 13, 31273